1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
SUBROUTINE ZGEQPF( M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO )
* * -- LAPACK deprecated computational routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. INTEGER JPVT( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) * .. * * Purpose * ======= * * This routine is deprecated and has been replaced by routine ZGEQP3. * * ZGEQPF computes a QR factorization with column pivoting of a * complex M-by-N matrix A: A*P = Q*R. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0 * * A (input/output) COMPLEX*16 array, dimension (LDA,N) * On entry, the M-by-N matrix A. * On exit, the upper triangle of the array contains the * min(M,N)-by-N upper triangular matrix R; the elements * below the diagonal, together with the array TAU, * represent the unitary matrix Q as a product of * min(m,n) elementary reflectors. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * JPVT (input/output) INTEGER array, dimension (N) * On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted * to the front of A*P (a leading column); if JPVT(i) = 0, * the i-th column of A is a free column. * On exit, if JPVT(i) = k, then the i-th column of A*P * was the k-th column of A. * * TAU (output) COMPLEX*16 array, dimension (min(M,N)) * The scalar factors of the elementary reflectors. * * WORK (workspace) COMPLEX*16 array, dimension (N) * * RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * The matrix Q is represented as a product of elementary reflectors * * Q = H(1) H(2) . . . H(n) * * Each H(i) has the form * * H = I - tau * v * v**H * * where tau is a complex scalar, and v is a complex vector with * v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i). * * The matrix P is represented in jpvt as follows: If * jpvt(j) = i * then the jth column of P is the ith canonical unit vector. * * Partial column norm updating strategy modified by * Z. Drmac and Z. Bujanovic, Dept. of Mathematics, * University of Zagreb, Croatia. * -- April 2011 -- * For more details see LAPACK Working Note 176. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER I, ITEMP, J, MA, MN, PVT DOUBLE PRECISION TEMP, TEMP2, TOL3Z COMPLEX*16 AII * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGEQR2, ZLARF, ZLARFG, ZSWAP, ZUNM2R * .. * .. Intrinsic Functions .. INTRINSIC ABS, DCMPLX, DCONJG, MAX, MIN, SQRT * .. * .. External Functions .. INTEGER IDAMAX DOUBLE PRECISION DLAMCH, DZNRM2 EXTERNAL IDAMAX, DLAMCH, DZNRM2 * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGEQPF', -INFO ) RETURN END IF * MN = MIN( M, N ) TOL3Z = SQRT(DLAMCH('Epsilon')) * * Move initial columns up front * ITEMP = 1 DO 10 I = 1, N IF( JPVT( I ).NE.0 ) THEN IF( I.NE.ITEMP ) THEN CALL ZSWAP( M, A( 1, I ), 1, A( 1, ITEMP ), 1 ) JPVT( I ) = JPVT( ITEMP ) JPVT( ITEMP ) = I ELSE JPVT( I ) = I END IF ITEMP = ITEMP + 1 ELSE JPVT( I ) = I END IF 10 CONTINUE ITEMP = ITEMP - 1 * * Compute the QR factorization and update remaining columns * IF( ITEMP.GT.0 ) THEN MA = MIN( ITEMP, M ) CALL ZGEQR2( M, MA, A, LDA, TAU, WORK, INFO ) IF( MA.LT.N ) THEN CALL ZUNM2R( 'Left', 'Conjugate transpose', M, N-MA, MA, A, $ LDA, TAU, A( 1, MA+1 ), LDA, WORK, INFO ) END IF END IF * IF( ITEMP.LT.MN ) THEN * * Initialize partial column norms. The first n elements of * work store the exact column norms. * DO 20 I = ITEMP + 1, N RWORK( I ) = DZNRM2( M-ITEMP, A( ITEMP+1, I ), 1 ) RWORK( N+I ) = RWORK( I ) 20 CONTINUE * * Compute factorization * DO 40 I = ITEMP + 1, MN * * Determine ith pivot column and swap if necessary * PVT = ( I-1 ) + IDAMAX( N-I+1, RWORK( I ), 1 ) * IF( PVT.NE.I ) THEN CALL ZSWAP( M, A( 1, PVT ), 1, A( 1, I ), 1 ) ITEMP = JPVT( PVT ) JPVT( PVT ) = JPVT( I ) JPVT( I ) = ITEMP RWORK( PVT ) = RWORK( I ) RWORK( N+PVT ) = RWORK( N+I ) END IF * * Generate elementary reflector H(i) * AII = A( I, I ) CALL ZLARFG( M-I+1, AII, A( MIN( I+1, M ), I ), 1, $ TAU( I ) ) A( I, I ) = AII * IF( I.LT.N ) THEN * * Apply H(i) to A(i:m,i+1:n) from the left * AII = A( I, I ) A( I, I ) = DCMPLX( ONE ) CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1, $ DCONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK ) A( I, I ) = AII END IF * * Update partial column norms * DO 30 J = I + 1, N IF( RWORK( J ).NE.ZERO ) THEN * * NOTE: The following 4 lines follow from the analysis in * Lapack Working Note 176. * TEMP = ABS( A( I, J ) ) / RWORK( J ) TEMP = MAX( ZERO, ( ONE+TEMP )*( ONE-TEMP ) ) TEMP2 = TEMP*( RWORK( J ) / RWORK( N+J ) )**2 IF( TEMP2 .LE. TOL3Z ) THEN IF( M-I.GT.0 ) THEN RWORK( J ) = DZNRM2( M-I, A( I+1, J ), 1 ) RWORK( N+J ) = RWORK( J ) ELSE RWORK( J ) = ZERO RWORK( N+J ) = ZERO END IF ELSE RWORK( J ) = RWORK( J )*SQRT( TEMP ) END IF END IF 30 CONTINUE * 40 CONTINUE END IF RETURN * * End of ZGEQPF * END |