1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
SUBROUTINE ZGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
* * -- LAPACK auxiliary routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. INTEGER LDA, N DOUBLE PRECISION SCALE * .. * .. Array Arguments .. INTEGER IPIV( * ), JPIV( * ) COMPLEX*16 A( LDA, * ), RHS( * ) * .. * * Purpose * ======= * * ZGESC2 solves a system of linear equations * * A * X = scale* RHS * * with a general N-by-N matrix A using the LU factorization with * complete pivoting computed by ZGETC2. * * * Arguments * ========= * * N (input) INTEGER * The number of columns of the matrix A. * * A (input) COMPLEX*16 array, dimension (LDA, N) * On entry, the LU part of the factorization of the n-by-n * matrix A computed by ZGETC2: A = P * L * U * Q * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1, N). * * RHS (input/output) COMPLEX*16 array, dimension N. * On entry, the right hand side vector b. * On exit, the solution vector X. * * IPIV (input) INTEGER array, dimension (N). * The pivot indices; for 1 <= i <= N, row i of the * matrix has been interchanged with row IPIV(i). * * JPIV (input) INTEGER array, dimension (N). * The pivot indices; for 1 <= j <= N, column j of the * matrix has been interchanged with column JPIV(j). * * SCALE (output) DOUBLE PRECISION * On exit, SCALE contains the scale factor. SCALE is chosen * 0 <= SCALE <= 1 to prevent owerflow in the solution. * * Further Details * =============== * * Based on contributions by * Bo Kagstrom and Peter Poromaa, Department of Computing Science, * Umea University, S-901 87 Umea, Sweden. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 ) * .. * .. Local Scalars .. INTEGER I, J DOUBLE PRECISION BIGNUM, EPS, SMLNUM COMPLEX*16 TEMP * .. * .. External Subroutines .. EXTERNAL ZLASWP, ZSCAL * .. * .. External Functions .. INTEGER IZAMAX DOUBLE PRECISION DLAMCH EXTERNAL IZAMAX, DLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DCMPLX * .. * .. Executable Statements .. * * Set constant to control overflow * EPS = DLAMCH( 'P' ) SMLNUM = DLAMCH( 'S' ) / EPS BIGNUM = ONE / SMLNUM CALL DLABAD( SMLNUM, BIGNUM ) * * Apply permutations IPIV to RHS * CALL ZLASWP( 1, RHS, LDA, 1, N-1, IPIV, 1 ) * * Solve for L part * DO 20 I = 1, N - 1 DO 10 J = I + 1, N RHS( J ) = RHS( J ) - A( J, I )*RHS( I ) 10 CONTINUE 20 CONTINUE * * Solve for U part * SCALE = ONE * * Check for scaling * I = IZAMAX( N, RHS, 1 ) IF( TWO*SMLNUM*ABS( RHS( I ) ).GT.ABS( A( N, N ) ) ) THEN TEMP = DCMPLX( ONE / TWO, ZERO ) / ABS( RHS( I ) ) CALL ZSCAL( N, TEMP, RHS( 1 ), 1 ) SCALE = SCALE*DBLE( TEMP ) END IF DO 40 I = N, 1, -1 TEMP = DCMPLX( ONE, ZERO ) / A( I, I ) RHS( I ) = RHS( I )*TEMP DO 30 J = I + 1, N RHS( I ) = RHS( I ) - RHS( J )*( A( I, J )*TEMP ) 30 CONTINUE 40 CONTINUE * * Apply permutations JPIV to the solution (RHS) * CALL ZLASWP( 1, RHS, LDA, 1, N-1, JPIV, -1 ) RETURN * * End of ZGESC2 * END |