1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
SUBROUTINE ZGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
$ INFO ) * * -- LAPACK driver routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDB, LWORK, M, N, P * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), B( LDB, * ), C( * ), D( * ), $ WORK( * ), X( * ) * .. * * Purpose * ======= * * ZGGLSE solves the linear equality-constrained least squares (LSE) * problem: * * minimize || c - A*x ||_2 subject to B*x = d * * where A is an M-by-N matrix, B is a P-by-N matrix, c is a given * M-vector, and d is a given P-vector. It is assumed that * P <= N <= M+P, and * * rank(B) = P and rank( (A) ) = N. * ( (B) ) * * These conditions ensure that the LSE problem has a unique solution, * which is obtained using a generalized RQ factorization of the * matrices (B, A) given by * * B = (0 R)*Q, A = Z*T*Q. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrices A and B. N >= 0. * * P (input) INTEGER * The number of rows of the matrix B. 0 <= P <= N <= M+P. * * A (input/output) COMPLEX*16 array, dimension (LDA,N) * On entry, the M-by-N matrix A. * On exit, the elements on and above the diagonal of the array * contain the min(M,N)-by-N upper trapezoidal matrix T. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * B (input/output) COMPLEX*16 array, dimension (LDB,N) * On entry, the P-by-N matrix B. * On exit, the upper triangle of the subarray B(1:P,N-P+1:N) * contains the P-by-P upper triangular matrix R. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,P). * * C (input/output) COMPLEX*16 array, dimension (M) * On entry, C contains the right hand side vector for the * least squares part of the LSE problem. * On exit, the residual sum of squares for the solution * is given by the sum of squares of elements N-P+1 to M of * vector C. * * D (input/output) COMPLEX*16 array, dimension (P) * On entry, D contains the right hand side vector for the * constrained equation. * On exit, D is destroyed. * * X (output) COMPLEX*16 array, dimension (N) * On exit, X is the solution of the LSE problem. * * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,M+N+P). * For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB, * where NB is an upper bound for the optimal blocksizes for * ZGEQRF, CGERQF, ZUNMQR and CUNMRQ. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * = 1: the upper triangular factor R associated with B in the * generalized RQ factorization of the pair (B, A) is * singular, so that rank(B) < P; the least squares * solution could not be computed. * = 2: the (N-P) by (N-P) part of the upper trapezoidal factor * T associated with A in the generalized RQ factorization * of the pair (B, A) is singular, so that * rank( (A) ) < N; the least squares solution could not * ( (B) ) * be computed. * * ===================================================================== * * .. Parameters .. COMPLEX*16 CONE PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL LQUERY INTEGER LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3, $ NB4, NR * .. * .. External Subroutines .. EXTERNAL XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGGRQF, ZTRMV, $ ZTRTRS, ZUNMQR, ZUNMRQ * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. Intrinsic Functions .. INTRINSIC INT, MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 MN = MIN( M, N ) LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, P ) ) THEN INFO = -7 END IF * * Calculate workspace * IF( INFO.EQ.0) THEN IF( N.EQ.0 ) THEN LWKMIN = 1 LWKOPT = 1 ELSE NB1 = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 ) NB2 = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 ) NB3 = ILAENV( 1, 'ZUNMQR', ' ', M, N, P, -1 ) NB4 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, P, -1 ) NB = MAX( NB1, NB2, NB3, NB4 ) LWKMIN = M + N + P LWKOPT = P + MN + MAX( M, N )*NB END IF WORK( 1 ) = LWKOPT * IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -12 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGGLSE', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Compute the GRQ factorization of matrices B and A: * * B*Q**H = ( 0 T12 ) P Z**H*A*Q**H = ( R11 R12 ) N-P * N-P P ( 0 R22 ) M+P-N * N-P P * * where T12 and R11 are upper triangular, and Q and Z are * unitary. * CALL ZGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ), $ WORK( P+MN+1 ), LWORK-P-MN, INFO ) LOPT = WORK( P+MN+1 ) * * Update c = Z**H *c = ( c1 ) N-P * ( c2 ) M+P-N * CALL ZUNMQR( 'Left', 'Conjugate Transpose', M, 1, MN, A, LDA, $ WORK( P+1 ), C, MAX( 1, M ), WORK( P+MN+1 ), $ LWORK-P-MN, INFO ) LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) ) * * Solve T12*x2 = d for x2 * IF( P.GT.0 ) THEN CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1, $ B( 1, N-P+1 ), LDB, D, P, INFO ) * IF( INFO.GT.0 ) THEN INFO = 1 RETURN END IF * * Put the solution in X * CALL ZCOPY( P, D, 1, X( N-P+1 ), 1 ) * * Update c1 * CALL ZGEMV( 'No transpose', N-P, P, -CONE, A( 1, N-P+1 ), LDA, $ D, 1, CONE, C, 1 ) END IF * * Solve R11*x1 = c1 for x1 * IF( N.GT.P ) THEN CALL ZTRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1, $ A, LDA, C, N-P, INFO ) * IF( INFO.GT.0 ) THEN INFO = 2 RETURN END IF * * Put the solutions in X * CALL ZCOPY( N-P, C, 1, X, 1 ) END IF * * Compute the residual vector: * IF( M.LT.N ) THEN NR = M + P - N IF( NR.GT.0 ) $ CALL ZGEMV( 'No transpose', NR, N-M, -CONE, A( N-P+1, M+1 ), $ LDA, D( NR+1 ), 1, CONE, C( N-P+1 ), 1 ) ELSE NR = P END IF IF( NR.GT.0 ) THEN CALL ZTRMV( 'Upper', 'No transpose', 'Non unit', NR, $ A( N-P+1, N-P+1 ), LDA, D, 1 ) CALL ZAXPY( NR, -CONE, D, 1, C( N-P+1 ), 1 ) END IF * * Backward transformation x = Q**H*x * CALL ZUNMRQ( 'Left', 'Conjugate Transpose', N, 1, P, B, LDB, $ WORK( 1 ), X, N, WORK( P+MN+1 ), LWORK-P-MN, INFO ) WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) ) * RETURN * * End of ZGGLSE * END |