1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
SUBROUTINE ZGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. INTEGER INFO, LDB, N, NRHS * .. * .. Array Arguments .. COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ) * .. * * Purpose * ======= * * ZGTSV solves the equation * * A*X = B, * * where A is an N-by-N tridiagonal matrix, by Gaussian elimination with * partial pivoting. * * Note that the equation A**H *X = B may be solved by interchanging the * order of the arguments DU and DL. * * Arguments * ========= * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * DL (input/output) COMPLEX*16 array, dimension (N-1) * On entry, DL must contain the (n-1) subdiagonal elements of * A. * On exit, DL is overwritten by the (n-2) elements of the * second superdiagonal of the upper triangular matrix U from * the LU factorization of A, in DL(1), ..., DL(n-2). * * D (input/output) COMPLEX*16 array, dimension (N) * On entry, D must contain the diagonal elements of A. * On exit, D is overwritten by the n diagonal elements of U. * * DU (input/output) COMPLEX*16 array, dimension (N-1) * On entry, DU must contain the (n-1) superdiagonal elements * of A. * On exit, DU is overwritten by the (n-1) elements of the first * superdiagonal of U. * * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) * On entry, the N-by-NRHS right hand side matrix B. * On exit, if INFO = 0, the N-by-NRHS solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, U(i,i) is exactly zero, and the solution * has not been computed. The factorization has not been * completed unless i = N. * * ===================================================================== * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER J, K COMPLEX*16 MULT, TEMP, ZDUM * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DIMAG, MAX * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Statement Functions .. DOUBLE PRECISION CABS1 * .. * .. Statement Function definitions .. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) ) * .. * .. Executable Statements .. * INFO = 0 IF( N.LT.0 ) THEN INFO = -1 ELSE IF( NRHS.LT.0 ) THEN INFO = -2 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGTSV ', -INFO ) RETURN END IF * IF( N.EQ.0 ) $ RETURN * DO 30 K = 1, N - 1 IF( DL( K ).EQ.ZERO ) THEN * * Subdiagonal is zero, no elimination is required. * IF( D( K ).EQ.ZERO ) THEN * * Diagonal is zero: set INFO = K and return; a unique * solution can not be found. * INFO = K RETURN END IF ELSE IF( CABS1( D( K ) ).GE.CABS1( DL( K ) ) ) THEN * * No row interchange required * MULT = DL( K ) / D( K ) D( K+1 ) = D( K+1 ) - MULT*DU( K ) DO 10 J = 1, NRHS B( K+1, J ) = B( K+1, J ) - MULT*B( K, J ) 10 CONTINUE IF( K.LT.( N-1 ) ) $ DL( K ) = ZERO ELSE * * Interchange rows K and K+1 * MULT = D( K ) / DL( K ) D( K ) = DL( K ) TEMP = D( K+1 ) D( K+1 ) = DU( K ) - MULT*TEMP IF( K.LT.( N-1 ) ) THEN DL( K ) = DU( K+1 ) DU( K+1 ) = -MULT*DL( K ) END IF DU( K ) = TEMP DO 20 J = 1, NRHS TEMP = B( K, J ) B( K, J ) = B( K+1, J ) B( K+1, J ) = TEMP - MULT*B( K+1, J ) 20 CONTINUE END IF 30 CONTINUE IF( D( N ).EQ.ZERO ) THEN INFO = N RETURN END IF * * Back solve with the matrix U from the factorization. * DO 50 J = 1, NRHS B( N, J ) = B( N, J ) / D( N ) IF( N.GT.1 ) $ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 ) DO 40 K = N - 2, 1, -1 B( K, J ) = ( B( K, J )-DU( K )*B( K+1, J )-DL( K )* $ B( K+2, J ) ) / D( K ) 40 CONTINUE 50 CONTINUE * RETURN * * End of ZGTSV * END |