1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
SUBROUTINE ZHESWAPR( UPLO, N, A, LDA, I1, I2)
* * -- LAPACK auxiliary routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER I1, I2, LDA, N * .. * .. Array Arguments .. COMPLEX*16 A( LDA, N ) * * Purpose * ======= * * ZHESWAPR applies an elementary permutation on the rows and the columns of * a hermitian matrix. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the details of the factorization are stored * as an upper or lower triangular matrix. * = 'U': Upper triangular, form is A = U*D*U**T; * = 'L': Lower triangular, form is A = L*D*L**T. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) COMPLEX*16 array, dimension (LDA,N) * On entry, the NB diagonal matrix D and the multipliers * used to obtain the factor U or L as computed by CSYTRF. * * On exit, if INFO = 0, the (symmetric) inverse of the original * matrix. If UPLO = 'U', the upper triangular part of the * inverse is formed and the part of A below the diagonal is not * referenced; if UPLO = 'L' the lower triangular part of the * inverse is formed and the part of A above the diagonal is * not referenced. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * I1 (input) INTEGER * Index of the first row to swap * * I2 (input) INTEGER * Index of the second row to swap * * ===================================================================== * * .. * .. Local Scalars .. LOGICAL UPPER INTEGER I COMPLEX*16 TMP * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL ZSWAP * .. * .. Executable Statements .. * UPPER = LSAME( UPLO, 'U' ) IF (UPPER) THEN * * UPPER * first swap * - swap column I1 and I2 from I1 to I1-1 CALL ZSWAP( I1-1, A(1,I1), 1, A(1,I2), 1 ) * * second swap : * - swap A(I1,I1) and A(I2,I2) * - swap row I1 from I1+1 to I2-1 with col I2 from I1+1 to I2-1 * - swap A(I2,I1) and A(I1,I2) TMP=A(I1,I1) A(I1,I1)=A(I2,I2) A(I2,I2)=TMP * DO I=1,I2-I1-1 TMP=A(I1,I1+I) A(I1,I1+I)=DCONJG(A(I1+I,I2)) A(I1+I,I2)=DCONJG(TMP) END DO * A(I1,I2)=DCONJG(A(I1,I2)) * * third swap * - swap row I1 and I2 from I2+1 to N DO I=I2+1,N TMP=A(I1,I) A(I1,I)=A(I2,I) A(I2,I)=TMP END DO * ELSE * * LOWER * first swap * - swap row I1 and I2 from 1 to I1-1 CALL ZSWAP ( I1-1, A(I1,1), LDA, A(I2,1), LDA ) * * second swap : * - swap A(I1,I1) and A(I2,I2) * - swap col I1 from I1+1 to I2-1 with row I2 from I1+1 to I2-1 * - swap A(I2,I1) and A(I1,I2) TMP=A(I1,I1) A(I1,I1)=A(I2,I2) A(I2,I2)=TMP * DO I=1,I2-I1-1 TMP=A(I1+I,I1) A(I1+I,I1)=DCONJG(A(I2,I1+I)) A(I2,I1+I)=DCONJG(TMP) END DO * A(I2,I1)=DCONJG(A(I2,I1)) * * third swap * - swap col I1 and I2 from I2+1 to N DO I=I2+1,N TMP=A(I,I1) A(I,I1)=A(I,I2) A(I,I2)=TMP END DO * ENDIF END SUBROUTINE ZHESWAPR |