1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, N * .. * .. Array Arguments .. DOUBLE PRECISION D( * ), E( * ) COMPLEX*16 A( LDA, * ), TAU( * ) * .. * * Purpose * ======= * * ZHETD2 reduces a complex Hermitian matrix A to real symmetric * tridiagonal form T by a unitary similarity transformation: * Q**H * A * Q = T. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * Hermitian matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) COMPLEX*16 array, dimension (LDA,N) * On entry, the Hermitian matrix A. If UPLO = 'U', the leading * n-by-n upper triangular part of A contains the upper * triangular part of the matrix A, and the strictly lower * triangular part of A is not referenced. If UPLO = 'L', the * leading n-by-n lower triangular part of A contains the lower * triangular part of the matrix A, and the strictly upper * triangular part of A is not referenced. * On exit, if UPLO = 'U', the diagonal and first superdiagonal * of A are overwritten by the corresponding elements of the * tridiagonal matrix T, and the elements above the first * superdiagonal, with the array TAU, represent the unitary * matrix Q as a product of elementary reflectors; if UPLO * = 'L', the diagonal and first subdiagonal of A are over- * written by the corresponding elements of the tridiagonal * matrix T, and the elements below the first subdiagonal, with * the array TAU, represent the unitary matrix Q as a product * of elementary reflectors. See Further Details. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * D (output) DOUBLE PRECISION array, dimension (N) * The diagonal elements of the tridiagonal matrix T: * D(i) = A(i,i). * * E (output) DOUBLE PRECISION array, dimension (N-1) * The off-diagonal elements of the tridiagonal matrix T: * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. * * TAU (output) COMPLEX*16 array, dimension (N-1) * The scalar factors of the elementary reflectors (see Further * Details). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value. * * Further Details * =============== * * If UPLO = 'U', the matrix Q is represented as a product of elementary * reflectors * * Q = H(n-1) . . . H(2) H(1). * * Each H(i) has the form * * H(i) = I - tau * v * v**H * * where tau is a complex scalar, and v is a complex vector with * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in * A(1:i-1,i+1), and tau in TAU(i). * * If UPLO = 'L', the matrix Q is represented as a product of elementary * reflectors * * Q = H(1) H(2) . . . H(n-1). * * Each H(i) has the form * * H(i) = I - tau * v * v**H * * where tau is a complex scalar, and v is a complex vector with * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), * and tau in TAU(i). * * The contents of A on exit are illustrated by the following examples * with n = 5: * * if UPLO = 'U': if UPLO = 'L': * * ( d e v2 v3 v4 ) ( d ) * ( d e v3 v4 ) ( e d ) * ( d e v4 ) ( v1 e d ) * ( d e ) ( v1 v2 e d ) * ( d ) ( v1 v2 v3 e d ) * * where d and e denote diagonal and off-diagonal elements of T, and vi * denotes an element of the vector defining H(i). * * ===================================================================== * * .. Parameters .. COMPLEX*16 ONE, ZERO, HALF PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ), $ ZERO = ( 0.0D+0, 0.0D+0 ), $ HALF = ( 0.5D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER I COMPLEX*16 ALPHA, TAUI * .. * .. External Subroutines .. EXTERNAL XERBLA, ZAXPY, ZHEMV, ZHER2, ZLARFG * .. * .. External Functions .. LOGICAL LSAME COMPLEX*16 ZDOTC EXTERNAL LSAME, ZDOTC * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 UPPER = LSAME( UPLO, 'U') IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZHETD2', -INFO ) RETURN END IF * * Quick return if possible * IF( N.LE.0 ) $ RETURN * IF( UPPER ) THEN * * Reduce the upper triangle of A * A( N, N ) = DBLE( A( N, N ) ) DO 10 I = N - 1, 1, -1 * * Generate elementary reflector H(i) = I - tau * v * v**H * to annihilate A(1:i-1,i+1) * ALPHA = A( I, I+1 ) CALL ZLARFG( I, ALPHA, A( 1, I+1 ), 1, TAUI ) E( I ) = ALPHA * IF( TAUI.NE.ZERO ) THEN * * Apply H(i) from both sides to A(1:i,1:i) * A( I, I+1 ) = ONE * * Compute x := tau * A * v storing x in TAU(1:i) * CALL ZHEMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO, $ TAU, 1 ) * * Compute w := x - 1/2 * tau * (x**H * v) * v * ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, A( 1, I+1 ), 1 ) CALL ZAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 ) * * Apply the transformation as a rank-2 update: * A := A - v * w**H - w * v**H * CALL ZHER2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A, $ LDA ) * ELSE A( I, I ) = DBLE( A( I, I ) ) END IF A( I, I+1 ) = E( I ) D( I+1 ) = A( I+1, I+1 ) TAU( I ) = TAUI 10 CONTINUE D( 1 ) = A( 1, 1 ) ELSE * * Reduce the lower triangle of A * A( 1, 1 ) = DBLE( A( 1, 1 ) ) DO 20 I = 1, N - 1 * * Generate elementary reflector H(i) = I - tau * v * v**H * to annihilate A(i+2:n,i) * ALPHA = A( I+1, I ) CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAUI ) E( I ) = ALPHA * IF( TAUI.NE.ZERO ) THEN * * Apply H(i) from both sides to A(i+1:n,i+1:n) * A( I+1, I ) = ONE * * Compute x := tau * A * v storing y in TAU(i:n-1) * CALL ZHEMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA, $ A( I+1, I ), 1, ZERO, TAU( I ), 1 ) * * Compute w := x - 1/2 * tau * (x**H * v) * v * ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, A( I+1, I ), $ 1 ) CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 ) * * Apply the transformation as a rank-2 update: * A := A - v * w**H - w * v**H * CALL ZHER2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1, $ A( I+1, I+1 ), LDA ) * ELSE A( I+1, I+1 ) = DBLE( A( I+1, I+1 ) ) END IF A( I+1, I ) = E( I ) D( I ) = A( I, I ) TAU( I ) = TAUI 20 CONTINUE D( N ) = A( N, N ) END IF * RETURN * * End of ZHETD2 * END |