ZHPCON
   Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
Purpose
ZHPCON estimates the reciprocal of the condition number of a complex
Hermitian packed matrix A using the factorization A = U*D*U**H or
A = L*D*L**H computed by ZHPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Hermitian packed matrix A using the factorization A = U*D*U**H or
A = L*D*L**H computed by ZHPTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
| UPLO | 
 
(input) CHARACTER*1
 
Specifies whether the details of the factorization are stored 
as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**H; = 'L': Lower triangular, form is A = L*D*L**H.  | 
| N | 
 
(input) INTEGER
 
The order of the matrix A.  N >= 0. 
 | 
| AP | 
 
(input) COMPLEX*16 array, dimension (N*(N+1)/2)
 
The block diagonal matrix D and the multipliers used to 
obtain the factor U or L as computed by ZHPTRF, stored as a packed triangular matrix.  | 
| IPIV | 
 
(input) INTEGER array, dimension (N)
 
Details of the interchanges and the block structure of D 
as determined by ZHPTRF.  | 
| ANORM | 
 
(input) DOUBLE PRECISION
 
The 1-norm of the original matrix A. 
 | 
| RCOND | 
 
(output) DOUBLE PRECISION
 
The reciprocal of the condition number of the matrix A, 
computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine.  | 
| WORK | 
 
(workspace) COMPLEX*16 array, dimension (2*N)
 
 | 
| INFO | 
 
(output) INTEGER
 
= 0:  successful exit 
< 0: if INFO = -i, the i-th argument had an illegal value  |