1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
DOUBLE PRECISION FUNCTION ZLA_GBRCOND_X( TRANS, N, KL, KU, AB,
$ LDAB, AFB, LDAFB, IPIV, $ X, INFO, WORK, RWORK ) * * -- LAPACK routine (version 3.2.1) -- * -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- * -- Jason Riedy of Univ. of California Berkeley. -- * -- April 2009 -- * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley and NAG Ltd. -- * IMPLICIT NONE * .. * .. Scalar Arguments .. CHARACTER TRANS INTEGER N, KL, KU, KD, KE, LDAB, LDAFB, INFO * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX*16 AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ), $ X( * ) DOUBLE PRECISION RWORK( * ) * * * Purpose * ======= * * ZLA_GBRCOND_X Computes the infinity norm condition number of * op(A) * diag(X) where X is a COMPLEX*16 vector. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * Specifies the form of the system of equations: * = 'N': A * X = B (No transpose) * = 'T': A**T * X = B (Transpose) * = 'C': A**H * X = B (Conjugate Transpose = Transpose) * * N (input) INTEGER * The number of linear equations, i.e., the order of the * matrix A. N >= 0. * * KL (input) INTEGER * The number of subdiagonals within the band of A. KL >= 0. * * KU (input) INTEGER * The number of superdiagonals within the band of A. KU >= 0. * * AB (input) COMPLEX*16 array, dimension (LDAB,N) * On entry, the matrix A in band storage, in rows 1 to KL+KU+1. * The j-th column of A is stored in the j-th column of the * array AB as follows: * AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KL+KU+1. * * AFB (input) COMPLEX*16 array, dimension (LDAFB,N) * Details of the LU factorization of the band matrix A, as * computed by ZGBTRF. U is stored as an upper triangular * band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, * and the multipliers used during the factorization are stored * in rows KL+KU+2 to 2*KL+KU+1. * * LDAFB (input) INTEGER * The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. * * IPIV (input) INTEGER array, dimension (N) * The pivot indices from the factorization A = P*L*U * as computed by ZGBTRF; row i of the matrix was interchanged * with row IPIV(i). * * X (input) COMPLEX*16 array, dimension (N) * The vector X in the formula op(A) * diag(X). * * INFO (output) INTEGER * = 0: Successful exit. * i > 0: The ith argument is invalid. * * WORK (input) COMPLEX*16 array, dimension (2*N). * Workspace. * * RWORK (input) DOUBLE PRECISION array, dimension (N). * Workspace. * * ===================================================================== * * .. Local Scalars .. LOGICAL NOTRANS INTEGER KASE, I, J DOUBLE PRECISION AINVNM, ANORM, TMP COMPLEX*16 ZDUM * .. * .. Local Arrays .. INTEGER ISAVE( 3 ) * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL ZLACN2, ZGBTRS, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. Statement Functions .. DOUBLE PRECISION CABS1 * .. * .. Statement Function Definitions .. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) ) * .. * .. Executable Statements .. * ZLA_GBRCOND_X = 0.0D+0 * INFO = 0 NOTRANS = LSAME( TRANS, 'N' ) IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T') .AND. .NOT. $ LSAME( TRANS, 'C' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN INFO = -3 ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN INFO = -4 ELSE IF( LDAB.LT.KL+KU+1 ) THEN INFO = -6 ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN INFO = -8 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLA_GBRCOND_X', -INFO ) RETURN END IF * * Compute norm of op(A)*op2(C). * KD = KU + 1 KE = KL + 1 ANORM = 0.0D+0 IF ( NOTRANS ) THEN DO I = 1, N TMP = 0.0D+0 DO J = MAX( I-KL, 1 ), MIN( I+KU, N ) TMP = TMP + CABS1( AB( KD+I-J, J) * X( J ) ) END DO RWORK( I ) = TMP ANORM = MAX( ANORM, TMP ) END DO ELSE DO I = 1, N TMP = 0.0D+0 DO J = MAX( I-KL, 1 ), MIN( I+KU, N ) TMP = TMP + CABS1( AB( KE-I+J, I ) * X( J ) ) END DO RWORK( I ) = TMP ANORM = MAX( ANORM, TMP ) END DO END IF * * Quick return if possible. * IF( N.EQ.0 ) THEN ZLA_GBRCOND_X = 1.0D+0 RETURN ELSE IF( ANORM .EQ. 0.0D+0 ) THEN RETURN END IF * * Estimate the norm of inv(op(A)). * AINVNM = 0.0D+0 * KASE = 0 10 CONTINUE CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE ) IF( KASE.NE.0 ) THEN IF( KASE.EQ.2 ) THEN * * Multiply by R. * DO I = 1, N WORK( I ) = WORK( I ) * RWORK( I ) END DO * IF ( NOTRANS ) THEN CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB, $ IPIV, WORK, N, INFO ) ELSE CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB, $ LDAFB, IPIV, WORK, N, INFO ) ENDIF * * Multiply by inv(X). * DO I = 1, N WORK( I ) = WORK( I ) / X( I ) END DO ELSE * * Multiply by inv(X**H). * DO I = 1, N WORK( I ) = WORK( I ) / X( I ) END DO * IF ( NOTRANS ) THEN CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB, $ LDAFB, IPIV, WORK, N, INFO ) ELSE CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB, $ IPIV, WORK, N, INFO ) END IF * * Multiply by R. * DO I = 1, N WORK( I ) = WORK( I ) * RWORK( I ) END DO END IF GO TO 10 END IF * * Compute the estimate of the reciprocal condition number. * IF( AINVNM .NE. 0.0D+0 ) $ ZLA_GBRCOND_X = 1.0D+0 / AINVNM * RETURN * END |