ZLA_GEAMV
Purpose
ZLA_GEAMV  performs one of the matrix-vector operations
y := alpha*abs(A)*abs(x) + beta*abs(y),
or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
where alpha and beta are scalars, x and y are vectors and A is an
m by n matrix.
This function is primarily used in calculating error bounds.
To protect against underflow during evaluation, components in
the resulting vector are perturbed away from zero by (N+1)
times the underflow threshold. To prevent unnecessarily large
errors for block-structure embedded in general matrices,
"symbolically" zero components are not perturbed. A zero
entry is considered "symbolic" if all multiplications involved
in computing that entry have at least one zero multiplicand.
y := alpha*abs(A)*abs(x) + beta*abs(y),
or y := alpha*abs(A)**T*abs(x) + beta*abs(y),
where alpha and beta are scalars, x and y are vectors and A is an
m by n matrix.
This function is primarily used in calculating error bounds.
To protect against underflow during evaluation, components in
the resulting vector are perturbed away from zero by (N+1)
times the underflow threshold. To prevent unnecessarily large
errors for block-structure embedded in general matrices,
"symbolically" zero components are not perturbed. A zero
entry is considered "symbolic" if all multiplications involved
in computing that entry have at least one zero multiplicand.
Arguments
| TRANS | 
 
(input) INTEGER
 
On entry, TRANS specifies the operation to be performed as 
follows: BLAS_NO_TRANS y := alpha*abs(A)*abs(x) + beta*abs(y) BLAS_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) BLAS_CONJ_TRANS y := alpha*abs(A**T)*abs(x) + beta*abs(y) Unchanged on exit.  | 
| M | 
 
(input) INTEGER
 
On entry, M specifies the number of rows of the matrix A. 
M must be at least zero. Unchanged on exit.  | 
| N | 
 
(input) INTEGER
 
On entry, N specifies the number of columns of the matrix A. 
N must be at least zero. Unchanged on exit.  | 
| ALPHA | 
 
(input) DOUBLE PRECISION
 
On entry, ALPHA specifies the scalar alpha. 
Unchanged on exit.  | 
| A | 
 
(input) COMPLEX*16 array of DIMENSION ( LDA, n )
 
Before entry, the leading m by n part of the array A must 
contain the matrix of coefficients. Unchanged on exit.  | 
| LDA | 
 
(input) INTEGER
 
On entry, LDA specifies the first dimension of A as declared 
in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit.  | 
| X | 
 
(input) COMPLEX*16 array of DIMENSION at least
 
( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' 
and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit.  | 
| INCX | 
 
(input) INTEGER
 
On entry, INCX specifies the increment for the elements of 
X. INCX must not be zero. Unchanged on exit.  | 
| BETA | 
 
(input) DOUBLE PRECISION
 
On entry, BETA specifies the scalar beta. When BETA is 
supplied as zero then Y need not be set on input. Unchanged on exit.  | 
| Y | 
 
(input/output) DOUBLE PRECISION  array, dimension
 
( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' 
and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry with BETA non-zero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y.  | 
| INCY | 
 
(input) INTEGER
 
On entry, INCY specifies the increment for the elements of 
Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine.  |