ZLA_HERCOND_C
Purpose
ZLA_HERCOND_C computes the infinity norm condition number of
op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
Arguments
UPLO |
(input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored. |
N |
(input) INTEGER
The number of linear equations, i.e., the order of the
matrix A. N >= 0. |
A |
(input) COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N matrix A
|
LDA |
(input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
|
AF |
(input) COMPLEX*16 array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by ZHETRF. |
LDAF |
(input) INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
|
IPIV |
(input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by CHETRF. |
C |
(input) DOUBLE PRECISION array, dimension (N)
The vector C in the formula op(A) * inv(diag(C)).
|
CAPPLY |
(input) LOGICAL
If .TRUE. then access the vector C in the formula above.
|
INFO |
(output) INTEGER
= 0: Successful exit.
i > 0: The ith argument is invalid. |
WORK |
(input) COMPLEX*16 array, dimension (2*N).
Workspace.
|
RWORK |
(input) DOUBLE PRECISION array, dimension (N).
Workspace.
|