ZLA_HERCOND_X
Purpose
   ZLA_HERCOND_X computes the infinity norm condition number of
op(A) * diag(X) where X is a COMPLEX*16 vector.
op(A) * diag(X) where X is a COMPLEX*16 vector.
Arguments
| UPLO | 
 
(input) CHARACTER*1
 
= 'U':  Upper triangle of A is stored; 
= 'L': Lower triangle of A is stored.  | 
| N | 
 
(input) INTEGER
 
The number of linear equations, i.e., the order of the 
matrix A. N >= 0.  | 
| A | 
 
(input) COMPLEX*16 array, dimension (LDA,N)
 
On entry, the N-by-N matrix A. 
 | 
| LDA | 
 
(input) INTEGER
 
The leading dimension of the array A.  LDA >= max(1,N). 
 | 
| AF | 
 
(input) COMPLEX*16 array, dimension (LDAF,N)
 
The block diagonal matrix D and the multipliers used to 
obtain the factor U or L as computed by ZHETRF.  | 
| LDAF | 
 
(input) INTEGER
 
The leading dimension of the array AF.  LDAF >= max(1,N). 
 | 
| IPIV | 
 
(input) INTEGER array, dimension (N)
 
Details of the interchanges and the block structure of D 
as determined by CHETRF.  | 
| X | 
 
(input) COMPLEX*16 array, dimension (N)
 
The vector X in the formula op(A) * diag(X). 
 | 
| INFO | 
 
(output) INTEGER
 
= 0:  Successful exit. 
i > 0: The ith argument is invalid.  | 
| WORK | 
 
(input) COMPLEX*16 array, dimension (2*N).
 
Workspace. 
 | 
| RWORK | 
 
(input) DOUBLE PRECISION array, dimension (N).
 
Workspace. 
 |