1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
SUBROUTINE ZLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 )
* * -- LAPACK auxiliary routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. COMPLEX*16 A, B, C, CS1, EVSCAL, RT1, RT2, SN1 * .. * * Purpose * ======= * * ZLAESY computes the eigendecomposition of a 2-by-2 symmetric matrix * ( ( A, B );( B, C ) ) * provided the norm of the matrix of eigenvectors is larger than * some threshold value. * * RT1 is the eigenvalue of larger absolute value, and RT2 of * smaller absolute value. If the eigenvectors are computed, then * on return ( CS1, SN1 ) is the unit eigenvector for RT1, hence * * [ CS1 SN1 ] . [ A B ] . [ CS1 -SN1 ] = [ RT1 0 ] * [ -SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ] * * Arguments * ========= * * A (input) COMPLEX*16 * The ( 1, 1 ) element of input matrix. * * B (input) COMPLEX*16 * The ( 1, 2 ) element of input matrix. The ( 2, 1 ) element * is also given by B, since the 2-by-2 matrix is symmetric. * * C (input) COMPLEX*16 * The ( 2, 2 ) element of input matrix. * * RT1 (output) COMPLEX*16 * The eigenvalue of larger modulus. * * RT2 (output) COMPLEX*16 * The eigenvalue of smaller modulus. * * EVSCAL (output) COMPLEX*16 * The complex value by which the eigenvector matrix was scaled * to make it orthonormal. If EVSCAL is zero, the eigenvectors * were not computed. This means one of two things: the 2-by-2 * matrix could not be diagonalized, or the norm of the matrix * of eigenvectors before scaling was larger than the threshold * value THRESH (set below). * * CS1 (output) COMPLEX*16 * SN1 (output) COMPLEX*16 * If EVSCAL .NE. 0, ( CS1, SN1 ) is the unit right eigenvector * for RT1. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D0 ) COMPLEX*16 CONE PARAMETER ( CONE = ( 1.0D0, 0.0D0 ) ) DOUBLE PRECISION HALF PARAMETER ( HALF = 0.5D0 ) DOUBLE PRECISION THRESH PARAMETER ( THRESH = 0.1D0 ) * .. * .. Local Scalars .. DOUBLE PRECISION BABS, EVNORM, TABS, Z COMPLEX*16 S, T, TMP * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT * .. * .. Executable Statements .. * * * Special case: The matrix is actually diagonal. * To avoid divide by zero later, we treat this case separately. * IF( ABS( B ).EQ.ZERO ) THEN RT1 = A RT2 = C IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN TMP = RT1 RT1 = RT2 RT2 = TMP CS1 = ZERO SN1 = ONE ELSE CS1 = ONE SN1 = ZERO END IF ELSE * * Compute the eigenvalues and eigenvectors. * The characteristic equation is * lambda **2 - (A+C) lambda + (A*C - B*B) * and we solve it using the quadratic formula. * S = ( A+C )*HALF T = ( A-C )*HALF * * Take the square root carefully to avoid over/under flow. * BABS = ABS( B ) TABS = ABS( T ) Z = MAX( BABS, TABS ) IF( Z.GT.ZERO ) $ T = Z*SQRT( ( T / Z )**2+( B / Z )**2 ) * * Compute the two eigenvalues. RT1 and RT2 are exchanged * if necessary so that RT1 will have the greater magnitude. * RT1 = S + T RT2 = S - T IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN TMP = RT1 RT1 = RT2 RT2 = TMP END IF * * Choose CS1 = 1 and SN1 to satisfy the first equation, then * scale the components of this eigenvector so that the matrix * of eigenvectors X satisfies X * X**T = I . (No scaling is * done if the norm of the eigenvalue matrix is less than THRESH.) * SN1 = ( RT1-A ) / B TABS = ABS( SN1 ) IF( TABS.GT.ONE ) THEN T = TABS*SQRT( ( ONE / TABS )**2+( SN1 / TABS )**2 ) ELSE T = SQRT( CONE+SN1*SN1 ) END IF EVNORM = ABS( T ) IF( EVNORM.GE.THRESH ) THEN EVSCAL = CONE / T CS1 = EVSCAL SN1 = SN1*EVSCAL ELSE EVSCAL = ZERO END IF END IF RETURN * * End of ZLAESY * END |