ZLAEV2
November 2006
Purpose
ZLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
[ A B ]
[ CONJG(B) C ].
On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
eigenvector for RT1, giving the decomposition
[ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ]
[-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ].
[ A B ]
[ CONJG(B) C ].
On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
eigenvector for RT1, giving the decomposition
[ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ]
[-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ].
Arguments
A |
(input) COMPLEX*16
The (1,1) element of the 2-by-2 matrix.
|
B |
(input) COMPLEX*16
The (1,2) element and the conjugate of the (2,1) element of
the 2-by-2 matrix. |
C |
(input) COMPLEX*16
The (2,2) element of the 2-by-2 matrix.
|
RT1 |
(output) DOUBLE PRECISION
The eigenvalue of larger absolute value.
|
RT2 |
(output) DOUBLE PRECISION
The eigenvalue of smaller absolute value.
|
CS1 |
(output) DOUBLE PRECISION
|
SN1 |
(output) COMPLEX*16
The vector (CS1, SN1) is a unit right eigenvector for RT1.
|
Further Details
RT1 is accurate to a few ulps barring over/underflow.
RT2 may be inaccurate if there is massive cancellation in the
determinant A*C-B*B; higher precision or correctly rounded or
correctly truncated arithmetic would be needed to compute RT2
accurately in all cases.
CS1 and SN1 are accurate to a few ulps barring over/underflow.
Overflow is possible only if RT1 is within a factor of 5 of overflow.
Underflow is harmless if the input data is 0 or exceeds
underflow_threshold / macheps.
RT2 may be inaccurate if there is massive cancellation in the
determinant A*C-B*B; higher precision or correctly rounded or
correctly truncated arithmetic would be needed to compute RT2
accurately in all cases.
CS1 and SN1 are accurate to a few ulps barring over/underflow.
Overflow is possible only if RT1 is within a factor of 5 of overflow.
Underflow is harmless if the input data is 0 or exceeds
underflow_threshold / macheps.