1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
$ B, LDB ) * * -- LAPACK auxiliary routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER TRANS INTEGER LDB, LDX, N, NRHS DOUBLE PRECISION ALPHA, BETA * .. * .. Array Arguments .. COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ), $ X( LDX, * ) * .. * * Purpose * ======= * * ZLAGTM performs a matrix-vector product of the form * * B := alpha * A * X + beta * B * * where A is a tridiagonal matrix of order N, B and X are N by NRHS * matrices, and alpha and beta are real scalars, each of which may be * 0., 1., or -1. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * Specifies the operation applied to A. * = 'N': No transpose, B := alpha * A * X + beta * B * = 'T': Transpose, B := alpha * A**T * X + beta * B * = 'C': Conjugate transpose, B := alpha * A**H * X + beta * B * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices X and B. * * ALPHA (input) DOUBLE PRECISION * The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, * it is assumed to be 0. * * DL (input) COMPLEX*16 array, dimension (N-1) * The (n-1) sub-diagonal elements of T. * * D (input) COMPLEX*16 array, dimension (N) * The diagonal elements of T. * * DU (input) COMPLEX*16 array, dimension (N-1) * The (n-1) super-diagonal elements of T. * * X (input) COMPLEX*16 array, dimension (LDX,NRHS) * The N by NRHS matrix X. * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(N,1). * * BETA (input) DOUBLE PRECISION * The scalar beta. BETA must be 0., 1., or -1.; otherwise, * it is assumed to be 1. * * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) * On entry, the N by NRHS matrix B. * On exit, B is overwritten by the matrix expression * B := alpha * A * X + beta * B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(N,1). * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. INTEGER I, J * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Intrinsic Functions .. INTRINSIC DCONJG * .. * .. Executable Statements .. * IF( N.EQ.0 ) $ RETURN * * Multiply B by BETA if BETA.NE.1. * IF( BETA.EQ.ZERO ) THEN DO 20 J = 1, NRHS DO 10 I = 1, N B( I, J ) = ZERO 10 CONTINUE 20 CONTINUE ELSE IF( BETA.EQ.-ONE ) THEN DO 40 J = 1, NRHS DO 30 I = 1, N B( I, J ) = -B( I, J ) 30 CONTINUE 40 CONTINUE END IF * IF( ALPHA.EQ.ONE ) THEN IF( LSAME( TRANS, 'N' ) ) THEN * * Compute B := B + A*X * DO 60 J = 1, NRHS IF( N.EQ.1 ) THEN B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) ELSE B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) + $ DU( 1 )*X( 2, J ) B( N, J ) = B( N, J ) + DL( N-1 )*X( N-1, J ) + $ D( N )*X( N, J ) DO 50 I = 2, N - 1 B( I, J ) = B( I, J ) + DL( I-1 )*X( I-1, J ) + $ D( I )*X( I, J ) + DU( I )*X( I+1, J ) 50 CONTINUE END IF 60 CONTINUE ELSE IF( LSAME( TRANS, 'T' ) ) THEN * * Compute B := B + A**T * X * DO 80 J = 1, NRHS IF( N.EQ.1 ) THEN B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) ELSE B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) + $ DL( 1 )*X( 2, J ) B( N, J ) = B( N, J ) + DU( N-1 )*X( N-1, J ) + $ D( N )*X( N, J ) DO 70 I = 2, N - 1 B( I, J ) = B( I, J ) + DU( I-1 )*X( I-1, J ) + $ D( I )*X( I, J ) + DL( I )*X( I+1, J ) 70 CONTINUE END IF 80 CONTINUE ELSE IF( LSAME( TRANS, 'C' ) ) THEN * * Compute B := B + A**H * X * DO 100 J = 1, NRHS IF( N.EQ.1 ) THEN B( 1, J ) = B( 1, J ) + DCONJG( D( 1 ) )*X( 1, J ) ELSE B( 1, J ) = B( 1, J ) + DCONJG( D( 1 ) )*X( 1, J ) + $ DCONJG( DL( 1 ) )*X( 2, J ) B( N, J ) = B( N, J ) + DCONJG( DU( N-1 ) )* $ X( N-1, J ) + DCONJG( D( N ) )*X( N, J ) DO 90 I = 2, N - 1 B( I, J ) = B( I, J ) + DCONJG( DU( I-1 ) )* $ X( I-1, J ) + DCONJG( D( I ) )* $ X( I, J ) + DCONJG( DL( I ) )* $ X( I+1, J ) 90 CONTINUE END IF 100 CONTINUE END IF ELSE IF( ALPHA.EQ.-ONE ) THEN IF( LSAME( TRANS, 'N' ) ) THEN * * Compute B := B - A*X * DO 120 J = 1, NRHS IF( N.EQ.1 ) THEN B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) ELSE B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) - $ DU( 1 )*X( 2, J ) B( N, J ) = B( N, J ) - DL( N-1 )*X( N-1, J ) - $ D( N )*X( N, J ) DO 110 I = 2, N - 1 B( I, J ) = B( I, J ) - DL( I-1 )*X( I-1, J ) - $ D( I )*X( I, J ) - DU( I )*X( I+1, J ) 110 CONTINUE END IF 120 CONTINUE ELSE IF( LSAME( TRANS, 'T' ) ) THEN * * Compute B := B - A**T *X * DO 140 J = 1, NRHS IF( N.EQ.1 ) THEN B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) ELSE B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) - $ DL( 1 )*X( 2, J ) B( N, J ) = B( N, J ) - DU( N-1 )*X( N-1, J ) - $ D( N )*X( N, J ) DO 130 I = 2, N - 1 B( I, J ) = B( I, J ) - DU( I-1 )*X( I-1, J ) - $ D( I )*X( I, J ) - DL( I )*X( I+1, J ) 130 CONTINUE END IF 140 CONTINUE ELSE IF( LSAME( TRANS, 'C' ) ) THEN * * Compute B := B - A**H *X * DO 160 J = 1, NRHS IF( N.EQ.1 ) THEN B( 1, J ) = B( 1, J ) - DCONJG( D( 1 ) )*X( 1, J ) ELSE B( 1, J ) = B( 1, J ) - DCONJG( D( 1 ) )*X( 1, J ) - $ DCONJG( DL( 1 ) )*X( 2, J ) B( N, J ) = B( N, J ) - DCONJG( DU( N-1 ) )* $ X( N-1, J ) - DCONJG( D( N ) )*X( N, J ) DO 150 I = 2, N - 1 B( I, J ) = B( I, J ) - DCONJG( DU( I-1 ) )* $ X( I-1, J ) - DCONJG( D( I ) )* $ X( I, J ) - DCONJG( DL( I ) )* $ X( I+1, J ) 150 CONTINUE END IF 160 CONTINUE END IF END IF RETURN * * End of ZLAGTM * END |