1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
SUBROUTINE ZLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
* * -- LAPACK auxiliary routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. INTEGER J, JOB DOUBLE PRECISION SEST, SESTPR COMPLEX*16 C, GAMMA, S * .. * .. Array Arguments .. COMPLEX*16 W( J ), X( J ) * .. * * Purpose * ======= * * ZLAIC1 applies one step of incremental condition estimation in * its simplest version: * * Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j * lower triangular matrix L, such that * twonorm(L*x) = sest * Then ZLAIC1 computes sestpr, s, c such that * the vector * [ s*x ] * xhat = [ c ] * is an approximate singular vector of * [ L 0 ] * Lhat = [ w**H gamma ] * in the sense that * twonorm(Lhat*xhat) = sestpr. * * Depending on JOB, an estimate for the largest or smallest singular * value is computed. * * Note that [s c]**H and sestpr**2 is an eigenpair of the system * * diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ] * [ conjg(gamma) ] * * where alpha = x**H * w. * * Arguments * ========= * * JOB (input) INTEGER * = 1: an estimate for the largest singular value is computed. * = 2: an estimate for the smallest singular value is computed. * * J (input) INTEGER * Length of X and W * * X (input) COMPLEX*16 array, dimension (J) * The j-vector x. * * SEST (input) DOUBLE PRECISION * Estimated singular value of j by j matrix L * * W (input) COMPLEX*16 array, dimension (J) * The j-vector w. * * GAMMA (input) COMPLEX*16 * The diagonal element gamma. * * SESTPR (output) DOUBLE PRECISION * Estimated singular value of (j+1) by (j+1) matrix Lhat. * * S (output) COMPLEX*16 * Sine needed in forming xhat. * * C (output) COMPLEX*16 * Cosine needed in forming xhat. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 ) DOUBLE PRECISION HALF, FOUR PARAMETER ( HALF = 0.5D0, FOUR = 4.0D0 ) * .. * .. Local Scalars .. DOUBLE PRECISION ABSALP, ABSEST, ABSGAM, B, EPS, NORMA, S1, S2, $ SCL, T, TEST, TMP, ZETA1, ZETA2 COMPLEX*16 ALPHA, COSINE, SINE * .. * .. Intrinsic Functions .. INTRINSIC ABS, DCONJG, MAX, SQRT * .. * .. External Functions .. DOUBLE PRECISION DLAMCH COMPLEX*16 ZDOTC EXTERNAL DLAMCH, ZDOTC * .. * .. Executable Statements .. * EPS = DLAMCH( 'Epsilon' ) ALPHA = ZDOTC( J, X, 1, W, 1 ) * ABSALP = ABS( ALPHA ) ABSGAM = ABS( GAMMA ) ABSEST = ABS( SEST ) * IF( JOB.EQ.1 ) THEN * * Estimating largest singular value * * special cases * IF( SEST.EQ.ZERO ) THEN S1 = MAX( ABSGAM, ABSALP ) IF( S1.EQ.ZERO ) THEN S = ZERO C = ONE SESTPR = ZERO ELSE S = ALPHA / S1 C = GAMMA / S1 TMP = SQRT( S*DCONJG( S )+C*DCONJG( C ) ) S = S / TMP C = C / TMP SESTPR = S1*TMP END IF RETURN ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN S = ONE C = ZERO TMP = MAX( ABSEST, ABSALP ) S1 = ABSEST / TMP S2 = ABSALP / TMP SESTPR = TMP*SQRT( S1*S1+S2*S2 ) RETURN ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN S1 = ABSGAM S2 = ABSEST IF( S1.LE.S2 ) THEN S = ONE C = ZERO SESTPR = S2 ELSE S = ZERO C = ONE SESTPR = S1 END IF RETURN ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN S1 = ABSGAM S2 = ABSALP IF( S1.LE.S2 ) THEN TMP = S1 / S2 SCL = SQRT( ONE+TMP*TMP ) SESTPR = S2*SCL S = ( ALPHA / S2 ) / SCL C = ( GAMMA / S2 ) / SCL ELSE TMP = S2 / S1 SCL = SQRT( ONE+TMP*TMP ) SESTPR = S1*SCL S = ( ALPHA / S1 ) / SCL C = ( GAMMA / S1 ) / SCL END IF RETURN ELSE * * normal case * ZETA1 = ABSALP / ABSEST ZETA2 = ABSGAM / ABSEST * B = ( ONE-ZETA1*ZETA1-ZETA2*ZETA2 )*HALF C = ZETA1*ZETA1 IF( B.GT.ZERO ) THEN T = C / ( B+SQRT( B*B+C ) ) ELSE T = SQRT( B*B+C ) - B END IF * SINE = -( ALPHA / ABSEST ) / T COSINE = -( GAMMA / ABSEST ) / ( ONE+T ) TMP = SQRT( SINE*DCONJG( SINE )+COSINE*DCONJG( COSINE ) ) S = SINE / TMP C = COSINE / TMP SESTPR = SQRT( T+ONE )*ABSEST RETURN END IF * ELSE IF( JOB.EQ.2 ) THEN * * Estimating smallest singular value * * special cases * IF( SEST.EQ.ZERO ) THEN SESTPR = ZERO IF( MAX( ABSGAM, ABSALP ).EQ.ZERO ) THEN SINE = ONE COSINE = ZERO ELSE SINE = -DCONJG( GAMMA ) COSINE = DCONJG( ALPHA ) END IF S1 = MAX( ABS( SINE ), ABS( COSINE ) ) S = SINE / S1 C = COSINE / S1 TMP = SQRT( S*DCONJG( S )+C*DCONJG( C ) ) S = S / TMP C = C / TMP RETURN ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN S = ZERO C = ONE SESTPR = ABSGAM RETURN ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN S1 = ABSGAM S2 = ABSEST IF( S1.LE.S2 ) THEN S = ZERO C = ONE SESTPR = S1 ELSE S = ONE C = ZERO SESTPR = S2 END IF RETURN ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN S1 = ABSGAM S2 = ABSALP IF( S1.LE.S2 ) THEN TMP = S1 / S2 SCL = SQRT( ONE+TMP*TMP ) SESTPR = ABSEST*( TMP / SCL ) S = -( DCONJG( GAMMA ) / S2 ) / SCL C = ( DCONJG( ALPHA ) / S2 ) / SCL ELSE TMP = S2 / S1 SCL = SQRT( ONE+TMP*TMP ) SESTPR = ABSEST / SCL S = -( DCONJG( GAMMA ) / S1 ) / SCL C = ( DCONJG( ALPHA ) / S1 ) / SCL END IF RETURN ELSE * * normal case * ZETA1 = ABSALP / ABSEST ZETA2 = ABSGAM / ABSEST * NORMA = MAX( ONE+ZETA1*ZETA1+ZETA1*ZETA2, $ ZETA1*ZETA2+ZETA2*ZETA2 ) * * See if root is closer to zero or to ONE * TEST = ONE + TWO*( ZETA1-ZETA2 )*( ZETA1+ZETA2 ) IF( TEST.GE.ZERO ) THEN * * root is close to zero, compute directly * B = ( ZETA1*ZETA1+ZETA2*ZETA2+ONE )*HALF C = ZETA2*ZETA2 T = C / ( B+SQRT( ABS( B*B-C ) ) ) SINE = ( ALPHA / ABSEST ) / ( ONE-T ) COSINE = -( GAMMA / ABSEST ) / T SESTPR = SQRT( T+FOUR*EPS*EPS*NORMA )*ABSEST ELSE * * root is closer to ONE, shift by that amount * B = ( ZETA2*ZETA2+ZETA1*ZETA1-ONE )*HALF C = ZETA1*ZETA1 IF( B.GE.ZERO ) THEN T = -C / ( B+SQRT( B*B+C ) ) ELSE T = B - SQRT( B*B+C ) END IF SINE = -( ALPHA / ABSEST ) / T COSINE = -( GAMMA / ABSEST ) / ( ONE+T ) SESTPR = SQRT( ONE+T+FOUR*EPS*EPS*NORMA )*ABSEST END IF TMP = SQRT( SINE*DCONJG( SINE )+COSINE*DCONJG( COSINE ) ) S = SINE / TMP C = COSINE / TMP RETURN * END IF END IF RETURN * * End of ZLAIC1 * END |