1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
DOUBLE PRECISION FUNCTION ZLANGE( NORM, M, N, A, LDA, WORK )
* * -- LAPACK auxiliary routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER NORM INTEGER LDA, M, N * .. * .. Array Arguments .. DOUBLE PRECISION WORK( * ) COMPLEX*16 A( LDA, * ) * .. * * Purpose * ======= * * ZLANGE returns the value of the one norm, or the Frobenius norm, or * the infinity norm, or the element of largest absolute value of a * complex matrix A. * * Description * =========== * * ZLANGE returns the value * * ZLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' * ( * ( norm1(A), NORM = '1', 'O' or 'o' * ( * ( normI(A), NORM = 'I' or 'i' * ( * ( normF(A), NORM = 'F', 'f', 'E' or 'e' * * where norm1 denotes the one norm of a matrix (maximum column sum), * normI denotes the infinity norm of a matrix (maximum row sum) and * normF denotes the Frobenius norm of a matrix (square root of sum of * squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. * * Arguments * ========= * * NORM (input) CHARACTER*1 * Specifies the value to be returned in ZLANGE as described * above. * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. When M = 0, * ZLANGE is set to zero. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. When N = 0, * ZLANGE is set to zero. * * A (input) COMPLEX*16 array, dimension (LDA,N) * The m by n matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(M,1). * * WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), * where LWORK >= M when NORM = 'I'; otherwise, WORK is not * referenced. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. INTEGER I, J DOUBLE PRECISION SCALE, SUM, VALUE * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL ZLASSQ * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, SQRT * .. * .. Executable Statements .. * IF( MIN( M, N ).EQ.0 ) THEN VALUE = ZERO ELSE IF( LSAME( NORM, 'M' ) ) THEN * * Find max(abs(A(i,j))). * VALUE = ZERO DO 20 J = 1, N DO 10 I = 1, M VALUE = MAX( VALUE, ABS( A( I, J ) ) ) 10 CONTINUE 20 CONTINUE ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN * * Find norm1(A). * VALUE = ZERO DO 40 J = 1, N SUM = ZERO DO 30 I = 1, M SUM = SUM + ABS( A( I, J ) ) 30 CONTINUE VALUE = MAX( VALUE, SUM ) 40 CONTINUE ELSE IF( LSAME( NORM, 'I' ) ) THEN * * Find normI(A). * DO 50 I = 1, M WORK( I ) = ZERO 50 CONTINUE DO 70 J = 1, N DO 60 I = 1, M WORK( I ) = WORK( I ) + ABS( A( I, J ) ) 60 CONTINUE 70 CONTINUE VALUE = ZERO DO 80 I = 1, M VALUE = MAX( VALUE, WORK( I ) ) 80 CONTINUE ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN * * Find normF(A). * SCALE = ZERO SUM = ONE DO 90 J = 1, N CALL ZLASSQ( M, A( 1, J ), 1, SCALE, SUM ) 90 CONTINUE VALUE = SCALE*SQRT( SUM ) END IF * ZLANGE = VALUE RETURN * * End of ZLANGE * END |