1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
SUBROUTINE ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S,
$ H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV, $ WV, LDWV, NH, WH, LDWH ) * * -- LAPACK auxiliary routine (version 3.3.0) -- * Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. * November 2010 * * .. Scalar Arguments .. INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV, $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV LOGICAL WANTT, WANTZ * .. * .. Array Arguments .. COMPLEX*16 H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ), $ WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * ) * .. * * This auxiliary subroutine called by ZLAQR0 performs a * single small-bulge multi-shift QR sweep. * * WANTT (input) logical scalar * WANTT = .true. if the triangular Schur factor * is being computed. WANTT is set to .false. otherwise. * * WANTZ (input) logical scalar * WANTZ = .true. if the unitary Schur factor is being * computed. WANTZ is set to .false. otherwise. * * KACC22 (input) integer with value 0, 1, or 2. * Specifies the computation mode of far-from-diagonal * orthogonal updates. * = 0: ZLAQR5 does not accumulate reflections and does not * use matrix-matrix multiply to update far-from-diagonal * matrix entries. * = 1: ZLAQR5 accumulates reflections and uses matrix-matrix * multiply to update the far-from-diagonal matrix entries. * = 2: ZLAQR5 accumulates reflections, uses matrix-matrix * multiply to update the far-from-diagonal matrix entries, * and takes advantage of 2-by-2 block structure during * matrix multiplies. * * N (input) integer scalar * N is the order of the Hessenberg matrix H upon which this * subroutine operates. * * KTOP (input) integer scalar * KBOT (input) integer scalar * These are the first and last rows and columns of an * isolated diagonal block upon which the QR sweep is to be * applied. It is assumed without a check that * either KTOP = 1 or H(KTOP,KTOP-1) = 0 * and * either KBOT = N or H(KBOT+1,KBOT) = 0. * * NSHFTS (input) integer scalar * NSHFTS gives the number of simultaneous shifts. NSHFTS * must be positive and even. * * S (input/output) COMPLEX*16 array of size (NSHFTS) * S contains the shifts of origin that define the multi- * shift QR sweep. On output S may be reordered. * * H (input/output) COMPLEX*16 array of size (LDH,N) * On input H contains a Hessenberg matrix. On output a * multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied * to the isolated diagonal block in rows and columns KTOP * through KBOT. * * LDH (input) integer scalar * LDH is the leading dimension of H just as declared in the * calling procedure. LDH.GE.MAX(1,N). * * ILOZ (input) INTEGER * IHIZ (input) INTEGER * Specify the rows of Z to which transformations must be * applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N * * Z (input/output) COMPLEX*16 array of size (LDZ,IHI) * If WANTZ = .TRUE., then the QR Sweep unitary * similarity transformation is accumulated into * Z(ILOZ:IHIZ,ILO:IHI) from the right. * If WANTZ = .FALSE., then Z is unreferenced. * * LDZ (input) integer scalar * LDA is the leading dimension of Z just as declared in * the calling procedure. LDZ.GE.N. * * V (workspace) COMPLEX*16 array of size (LDV,NSHFTS/2) * * LDV (input) integer scalar * LDV is the leading dimension of V as declared in the * calling procedure. LDV.GE.3. * * U (workspace) COMPLEX*16 array of size * (LDU,3*NSHFTS-3) * * LDU (input) integer scalar * LDU is the leading dimension of U just as declared in the * in the calling subroutine. LDU.GE.3*NSHFTS-3. * * NH (input) integer scalar * NH is the number of columns in array WH available for * workspace. NH.GE.1. * * WH (workspace) COMPLEX*16 array of size (LDWH,NH) * * LDWH (input) integer scalar * Leading dimension of WH just as declared in the * calling procedure. LDWH.GE.3*NSHFTS-3. * * NV (input) integer scalar * NV is the number of rows in WV agailable for workspace. * NV.GE.1. * * WV (workspace) COMPLEX*16 array of size * (LDWV,3*NSHFTS-3) * * LDWV (input) integer scalar * LDWV is the leading dimension of WV as declared in the * in the calling subroutine. LDWV.GE.NV. * * ================================================================ * Based on contributions by * Karen Braman and Ralph Byers, Department of Mathematics, * University of Kansas, USA * * ================================================================ * Reference: * * K. Braman, R. Byers and R. Mathias, The Multi-Shift QR * Algorithm Part I: Maintaining Well Focused Shifts, and * Level 3 Performance, SIAM Journal of Matrix Analysis, * volume 23, pages 929--947, 2002. * * ================================================================ * .. Parameters .. COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0d0, 0.0d0 ), $ ONE = ( 1.0d0, 0.0d0 ) ) DOUBLE PRECISION RZERO, RONE PARAMETER ( RZERO = 0.0d0, RONE = 1.0d0 ) * .. * .. Local Scalars .. COMPLEX*16 ALPHA, BETA, CDUM, REFSUM DOUBLE PRECISION H11, H12, H21, H22, SAFMAX, SAFMIN, SCL, $ SMLNUM, TST1, TST2, ULP INTEGER I2, I4, INCOL, J, J2, J4, JBOT, JCOL, JLEN, $ JROW, JTOP, K, K1, KDU, KMS, KNZ, KRCOL, KZS, $ M, M22, MBOT, MEND, MSTART, MTOP, NBMPS, NDCOL, $ NS, NU LOGICAL ACCUM, BLK22, BMP22 * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. Intrinsic Functions .. * INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN, MOD * .. * .. Local Arrays .. COMPLEX*16 VT( 3 ) * .. * .. External Subroutines .. EXTERNAL DLABAD, ZGEMM, ZLACPY, ZLAQR1, ZLARFG, ZLASET, $ ZTRMM * .. * .. Statement Functions .. DOUBLE PRECISION CABS1 * .. * .. Statement Function definitions .. CABS1( CDUM ) = ABS( DBLE( CDUM ) ) + ABS( DIMAG( CDUM ) ) * .. * .. Executable Statements .. * * ==== If there are no shifts, then there is nothing to do. ==== * IF( NSHFTS.LT.2 ) $ RETURN * * ==== If the active block is empty or 1-by-1, then there * . is nothing to do. ==== * IF( KTOP.GE.KBOT ) $ RETURN * * ==== NSHFTS is supposed to be even, but if it is odd, * . then simply reduce it by one. ==== * NS = NSHFTS - MOD( NSHFTS, 2 ) * * ==== Machine constants for deflation ==== * SAFMIN = DLAMCH( 'SAFE MINIMUM' ) SAFMAX = RONE / SAFMIN CALL DLABAD( SAFMIN, SAFMAX ) ULP = DLAMCH( 'PRECISION' ) SMLNUM = SAFMIN*( DBLE( N ) / ULP ) * * ==== Use accumulated reflections to update far-from-diagonal * . entries ? ==== * ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 ) * * ==== If so, exploit the 2-by-2 block structure? ==== * BLK22 = ( NS.GT.2 ) .AND. ( KACC22.EQ.2 ) * * ==== clear trash ==== * IF( KTOP+2.LE.KBOT ) $ H( KTOP+2, KTOP ) = ZERO * * ==== NBMPS = number of 2-shift bulges in the chain ==== * NBMPS = NS / 2 * * ==== KDU = width of slab ==== * KDU = 6*NBMPS - 3 * * ==== Create and chase chains of NBMPS bulges ==== * DO 210 INCOL = 3*( 1-NBMPS ) + KTOP - 1, KBOT - 2, 3*NBMPS - 2 NDCOL = INCOL + KDU IF( ACCUM ) $ CALL ZLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU ) * * ==== Near-the-diagonal bulge chase. The following loop * . performs the near-the-diagonal part of a small bulge * . multi-shift QR sweep. Each 6*NBMPS-2 column diagonal * . chunk extends from column INCOL to column NDCOL * . (including both column INCOL and column NDCOL). The * . following loop chases a 3*NBMPS column long chain of * . NBMPS bulges 3*NBMPS-2 columns to the right. (INCOL * . may be less than KTOP and and NDCOL may be greater than * . KBOT indicating phantom columns from which to chase * . bulges before they are actually introduced or to which * . to chase bulges beyond column KBOT.) ==== * DO 140 KRCOL = INCOL, MIN( INCOL+3*NBMPS-3, KBOT-2 ) * * ==== Bulges number MTOP to MBOT are active double implicit * . shift bulges. There may or may not also be small * . 2-by-2 bulge, if there is room. The inactive bulges * . (if any) must wait until the active bulges have moved * . down the diagonal to make room. The phantom matrix * . paradigm described above helps keep track. ==== * MTOP = MAX( 1, ( ( KTOP-1 )-KRCOL+2 ) / 3+1 ) MBOT = MIN( NBMPS, ( KBOT-KRCOL ) / 3 ) M22 = MBOT + 1 BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+3*( M22-1 ) ).EQ. $ ( KBOT-2 ) * * ==== Generate reflections to chase the chain right * . one column. (The minimum value of K is KTOP-1.) ==== * DO 10 M = MTOP, MBOT K = KRCOL + 3*( M-1 ) IF( K.EQ.KTOP-1 ) THEN CALL ZLAQR1( 3, H( KTOP, KTOP ), LDH, S( 2*M-1 ), $ S( 2*M ), V( 1, M ) ) ALPHA = V( 1, M ) CALL ZLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) ) ELSE BETA = H( K+1, K ) V( 2, M ) = H( K+2, K ) V( 3, M ) = H( K+3, K ) CALL ZLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) ) * * ==== A Bulge may collapse because of vigilant * . deflation or destructive underflow. In the * . underflow case, try the two-small-subdiagonals * . trick to try to reinflate the bulge. ==== * IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE. $ ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN * * ==== Typical case: not collapsed (yet). ==== * H( K+1, K ) = BETA H( K+2, K ) = ZERO H( K+3, K ) = ZERO ELSE * * ==== Atypical case: collapsed. Attempt to * . reintroduce ignoring H(K+1,K) and H(K+2,K). * . If the fill resulting from the new * . reflector is too large, then abandon it. * . Otherwise, use the new one. ==== * CALL ZLAQR1( 3, H( K+1, K+1 ), LDH, S( 2*M-1 ), $ S( 2*M ), VT ) ALPHA = VT( 1 ) CALL ZLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) ) REFSUM = DCONJG( VT( 1 ) )* $ ( H( K+1, K )+DCONJG( VT( 2 ) )* $ H( K+2, K ) ) * IF( CABS1( H( K+2, K )-REFSUM*VT( 2 ) )+ $ CABS1( REFSUM*VT( 3 ) ).GT.ULP* $ ( CABS1( H( K, K ) )+CABS1( H( K+1, $ K+1 ) )+CABS1( H( K+2, K+2 ) ) ) ) THEN * * ==== Starting a new bulge here would * . create non-negligible fill. Use * . the old one with trepidation. ==== * H( K+1, K ) = BETA H( K+2, K ) = ZERO H( K+3, K ) = ZERO ELSE * * ==== Stating a new bulge here would * . create only negligible fill. * . Replace the old reflector with * . the new one. ==== * H( K+1, K ) = H( K+1, K ) - REFSUM H( K+2, K ) = ZERO H( K+3, K ) = ZERO V( 1, M ) = VT( 1 ) V( 2, M ) = VT( 2 ) V( 3, M ) = VT( 3 ) END IF END IF END IF 10 CONTINUE * * ==== Generate a 2-by-2 reflection, if needed. ==== * K = KRCOL + 3*( M22-1 ) IF( BMP22 ) THEN IF( K.EQ.KTOP-1 ) THEN CALL ZLAQR1( 2, H( K+1, K+1 ), LDH, S( 2*M22-1 ), $ S( 2*M22 ), V( 1, M22 ) ) BETA = V( 1, M22 ) CALL ZLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) ) ELSE BETA = H( K+1, K ) V( 2, M22 ) = H( K+2, K ) CALL ZLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) ) H( K+1, K ) = BETA H( K+2, K ) = ZERO END IF END IF * * ==== Multiply H by reflections from the left ==== * IF( ACCUM ) THEN JBOT = MIN( NDCOL, KBOT ) ELSE IF( WANTT ) THEN JBOT = N ELSE JBOT = KBOT END IF DO 30 J = MAX( KTOP, KRCOL ), JBOT MEND = MIN( MBOT, ( J-KRCOL+2 ) / 3 ) DO 20 M = MTOP, MEND K = KRCOL + 3*( M-1 ) REFSUM = DCONJG( V( 1, M ) )* $ ( H( K+1, J )+DCONJG( V( 2, M ) )* $ H( K+2, J )+DCONJG( V( 3, M ) )*H( K+3, J ) ) H( K+1, J ) = H( K+1, J ) - REFSUM H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M ) H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M ) 20 CONTINUE 30 CONTINUE IF( BMP22 ) THEN K = KRCOL + 3*( M22-1 ) DO 40 J = MAX( K+1, KTOP ), JBOT REFSUM = DCONJG( V( 1, M22 ) )* $ ( H( K+1, J )+DCONJG( V( 2, M22 ) )* $ H( K+2, J ) ) H( K+1, J ) = H( K+1, J ) - REFSUM H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 ) 40 CONTINUE END IF * * ==== Multiply H by reflections from the right. * . Delay filling in the last row until the * . vigilant deflation check is complete. ==== * IF( ACCUM ) THEN JTOP = MAX( KTOP, INCOL ) ELSE IF( WANTT ) THEN JTOP = 1 ELSE JTOP = KTOP END IF DO 80 M = MTOP, MBOT IF( V( 1, M ).NE.ZERO ) THEN K = KRCOL + 3*( M-1 ) DO 50 J = JTOP, MIN( KBOT, K+3 ) REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )* $ H( J, K+2 )+V( 3, M )*H( J, K+3 ) ) H( J, K+1 ) = H( J, K+1 ) - REFSUM H( J, K+2 ) = H( J, K+2 ) - $ REFSUM*DCONJG( V( 2, M ) ) H( J, K+3 ) = H( J, K+3 ) - $ REFSUM*DCONJG( V( 3, M ) ) 50 CONTINUE * IF( ACCUM ) THEN * * ==== Accumulate U. (If necessary, update Z later * . with with an efficient matrix-matrix * . multiply.) ==== * KMS = K - INCOL DO 60 J = MAX( 1, KTOP-INCOL ), KDU REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )* $ U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) ) U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM U( J, KMS+2 ) = U( J, KMS+2 ) - $ REFSUM*DCONJG( V( 2, M ) ) U( J, KMS+3 ) = U( J, KMS+3 ) - $ REFSUM*DCONJG( V( 3, M ) ) 60 CONTINUE ELSE IF( WANTZ ) THEN * * ==== U is not accumulated, so update Z * . now by multiplying by reflections * . from the right. ==== * DO 70 J = ILOZ, IHIZ REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )* $ Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) ) Z( J, K+1 ) = Z( J, K+1 ) - REFSUM Z( J, K+2 ) = Z( J, K+2 ) - $ REFSUM*DCONJG( V( 2, M ) ) Z( J, K+3 ) = Z( J, K+3 ) - $ REFSUM*DCONJG( V( 3, M ) ) 70 CONTINUE END IF END IF 80 CONTINUE * * ==== Special case: 2-by-2 reflection (if needed) ==== * K = KRCOL + 3*( M22-1 ) IF( BMP22 ) THEN IF ( V( 1, M22 ).NE.ZERO ) THEN DO 90 J = JTOP, MIN( KBOT, K+3 ) REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )* $ H( J, K+2 ) ) H( J, K+1 ) = H( J, K+1 ) - REFSUM H( J, K+2 ) = H( J, K+2 ) - $ REFSUM*DCONJG( V( 2, M22 ) ) 90 CONTINUE * IF( ACCUM ) THEN KMS = K - INCOL DO 100 J = MAX( 1, KTOP-INCOL ), KDU REFSUM = V( 1, M22 )*( U( J, KMS+1 )+ $ V( 2, M22 )*U( J, KMS+2 ) ) U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM U( J, KMS+2 ) = U( J, KMS+2 ) - $ REFSUM*DCONJG( V( 2, M22 ) ) 100 CONTINUE ELSE IF( WANTZ ) THEN DO 110 J = ILOZ, IHIZ REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )* $ Z( J, K+2 ) ) Z( J, K+1 ) = Z( J, K+1 ) - REFSUM Z( J, K+2 ) = Z( J, K+2 ) - $ REFSUM*DCONJG( V( 2, M22 ) ) 110 CONTINUE END IF END IF END IF * * ==== Vigilant deflation check ==== * MSTART = MTOP IF( KRCOL+3*( MSTART-1 ).LT.KTOP ) $ MSTART = MSTART + 1 MEND = MBOT IF( BMP22 ) $ MEND = MEND + 1 IF( KRCOL.EQ.KBOT-2 ) $ MEND = MEND + 1 DO 120 M = MSTART, MEND K = MIN( KBOT-1, KRCOL+3*( M-1 ) ) * * ==== The following convergence test requires that * . the tradition small-compared-to-nearby-diagonals * . criterion and the Ahues & Tisseur (LAWN 122, 1997) * . criteria both be satisfied. The latter improves * . accuracy in some examples. Falling back on an * . alternate convergence criterion when TST1 or TST2 * . is zero (as done here) is traditional but probably * . unnecessary. ==== * IF( H( K+1, K ).NE.ZERO ) THEN TST1 = CABS1( H( K, K ) ) + CABS1( H( K+1, K+1 ) ) IF( TST1.EQ.RZERO ) THEN IF( K.GE.KTOP+1 ) $ TST1 = TST1 + CABS1( H( K, K-1 ) ) IF( K.GE.KTOP+2 ) $ TST1 = TST1 + CABS1( H( K, K-2 ) ) IF( K.GE.KTOP+3 ) $ TST1 = TST1 + CABS1( H( K, K-3 ) ) IF( K.LE.KBOT-2 ) $ TST1 = TST1 + CABS1( H( K+2, K+1 ) ) IF( K.LE.KBOT-3 ) $ TST1 = TST1 + CABS1( H( K+3, K+1 ) ) IF( K.LE.KBOT-4 ) $ TST1 = TST1 + CABS1( H( K+4, K+1 ) ) END IF IF( CABS1( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) ) $ THEN H12 = MAX( CABS1( H( K+1, K ) ), $ CABS1( H( K, K+1 ) ) ) H21 = MIN( CABS1( H( K+1, K ) ), $ CABS1( H( K, K+1 ) ) ) H11 = MAX( CABS1( H( K+1, K+1 ) ), $ CABS1( H( K, K )-H( K+1, K+1 ) ) ) H22 = MIN( CABS1( H( K+1, K+1 ) ), $ CABS1( H( K, K )-H( K+1, K+1 ) ) ) SCL = H11 + H12 TST2 = H22*( H11 / SCL ) * IF( TST2.EQ.RZERO .OR. H21*( H12 / SCL ).LE. $ MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO END IF END IF 120 CONTINUE * * ==== Fill in the last row of each bulge. ==== * MEND = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 3 ) DO 130 M = MTOP, MEND K = KRCOL + 3*( M-1 ) REFSUM = V( 1, M )*V( 3, M )*H( K+4, K+3 ) H( K+4, K+1 ) = -REFSUM H( K+4, K+2 ) = -REFSUM*DCONJG( V( 2, M ) ) H( K+4, K+3 ) = H( K+4, K+3 ) - $ REFSUM*DCONJG( V( 3, M ) ) 130 CONTINUE * * ==== End of near-the-diagonal bulge chase. ==== * 140 CONTINUE * * ==== Use U (if accumulated) to update far-from-diagonal * . entries in H. If required, use U to update Z as * . well. ==== * IF( ACCUM ) THEN IF( WANTT ) THEN JTOP = 1 JBOT = N ELSE JTOP = KTOP JBOT = KBOT END IF IF( ( .NOT.BLK22 ) .OR. ( INCOL.LT.KTOP ) .OR. $ ( NDCOL.GT.KBOT ) .OR. ( NS.LE.2 ) ) THEN * * ==== Updates not exploiting the 2-by-2 block * . structure of U. K1 and NU keep track of * . the location and size of U in the special * . cases of introducing bulges and chasing * . bulges off the bottom. In these special * . cases and in case the number of shifts * . is NS = 2, there is no 2-by-2 block * . structure to exploit. ==== * K1 = MAX( 1, KTOP-INCOL ) NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1 * * ==== Horizontal Multiply ==== * DO 150 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH JLEN = MIN( NH, JBOT-JCOL+1 ) CALL ZGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ), $ LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH, $ LDWH ) CALL ZLACPY( 'ALL', NU, JLEN, WH, LDWH, $ H( INCOL+K1, JCOL ), LDH ) 150 CONTINUE * * ==== Vertical multiply ==== * DO 160 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW ) CALL ZGEMM( 'N', 'N', JLEN, NU, NU, ONE, $ H( JROW, INCOL+K1 ), LDH, U( K1, K1 ), $ LDU, ZERO, WV, LDWV ) CALL ZLACPY( 'ALL', JLEN, NU, WV, LDWV, $ H( JROW, INCOL+K1 ), LDH ) 160 CONTINUE * * ==== Z multiply (also vertical) ==== * IF( WANTZ ) THEN DO 170 JROW = ILOZ, IHIZ, NV JLEN = MIN( NV, IHIZ-JROW+1 ) CALL ZGEMM( 'N', 'N', JLEN, NU, NU, ONE, $ Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ), $ LDU, ZERO, WV, LDWV ) CALL ZLACPY( 'ALL', JLEN, NU, WV, LDWV, $ Z( JROW, INCOL+K1 ), LDZ ) 170 CONTINUE END IF ELSE * * ==== Updates exploiting U's 2-by-2 block structure. * . (I2, I4, J2, J4 are the last rows and columns * . of the blocks.) ==== * I2 = ( KDU+1 ) / 2 I4 = KDU J2 = I4 - I2 J4 = KDU * * ==== KZS and KNZ deal with the band of zeros * . along the diagonal of one of the triangular * . blocks. ==== * KZS = ( J4-J2 ) - ( NS+1 ) KNZ = NS + 1 * * ==== Horizontal multiply ==== * DO 180 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH JLEN = MIN( NH, JBOT-JCOL+1 ) * * ==== Copy bottom of H to top+KZS of scratch ==== * (The first KZS rows get multiplied by zero.) ==== * CALL ZLACPY( 'ALL', KNZ, JLEN, H( INCOL+1+J2, JCOL ), $ LDH, WH( KZS+1, 1 ), LDWH ) * * ==== Multiply by U21**H ==== * CALL ZLASET( 'ALL', KZS, JLEN, ZERO, ZERO, WH, LDWH ) CALL ZTRMM( 'L', 'U', 'C', 'N', KNZ, JLEN, ONE, $ U( J2+1, 1+KZS ), LDU, WH( KZS+1, 1 ), $ LDWH ) * * ==== Multiply top of H by U11**H ==== * CALL ZGEMM( 'C', 'N', I2, JLEN, J2, ONE, U, LDU, $ H( INCOL+1, JCOL ), LDH, ONE, WH, LDWH ) * * ==== Copy top of H to bottom of WH ==== * CALL ZLACPY( 'ALL', J2, JLEN, H( INCOL+1, JCOL ), LDH, $ WH( I2+1, 1 ), LDWH ) * * ==== Multiply by U21**H ==== * CALL ZTRMM( 'L', 'L', 'C', 'N', J2, JLEN, ONE, $ U( 1, I2+1 ), LDU, WH( I2+1, 1 ), LDWH ) * * ==== Multiply by U22 ==== * CALL ZGEMM( 'C', 'N', I4-I2, JLEN, J4-J2, ONE, $ U( J2+1, I2+1 ), LDU, $ H( INCOL+1+J2, JCOL ), LDH, ONE, $ WH( I2+1, 1 ), LDWH ) * * ==== Copy it back ==== * CALL ZLACPY( 'ALL', KDU, JLEN, WH, LDWH, $ H( INCOL+1, JCOL ), LDH ) 180 CONTINUE * * ==== Vertical multiply ==== * DO 190 JROW = JTOP, MAX( INCOL, KTOP ) - 1, NV JLEN = MIN( NV, MAX( INCOL, KTOP )-JROW ) * * ==== Copy right of H to scratch (the first KZS * . columns get multiplied by zero) ==== * CALL ZLACPY( 'ALL', JLEN, KNZ, H( JROW, INCOL+1+J2 ), $ LDH, WV( 1, 1+KZS ), LDWV ) * * ==== Multiply by U21 ==== * CALL ZLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, LDWV ) CALL ZTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE, $ U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ), $ LDWV ) * * ==== Multiply by U11 ==== * CALL ZGEMM( 'N', 'N', JLEN, I2, J2, ONE, $ H( JROW, INCOL+1 ), LDH, U, LDU, ONE, WV, $ LDWV ) * * ==== Copy left of H to right of scratch ==== * CALL ZLACPY( 'ALL', JLEN, J2, H( JROW, INCOL+1 ), LDH, $ WV( 1, 1+I2 ), LDWV ) * * ==== Multiply by U21 ==== * CALL ZTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE, $ U( 1, I2+1 ), LDU, WV( 1, 1+I2 ), LDWV ) * * ==== Multiply by U22 ==== * CALL ZGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE, $ H( JROW, INCOL+1+J2 ), LDH, $ U( J2+1, I2+1 ), LDU, ONE, WV( 1, 1+I2 ), $ LDWV ) * * ==== Copy it back ==== * CALL ZLACPY( 'ALL', JLEN, KDU, WV, LDWV, $ H( JROW, INCOL+1 ), LDH ) 190 CONTINUE * * ==== Multiply Z (also vertical) ==== * IF( WANTZ ) THEN DO 200 JROW = ILOZ, IHIZ, NV JLEN = MIN( NV, IHIZ-JROW+1 ) * * ==== Copy right of Z to left of scratch (first * . KZS columns get multiplied by zero) ==== * CALL ZLACPY( 'ALL', JLEN, KNZ, $ Z( JROW, INCOL+1+J2 ), LDZ, $ WV( 1, 1+KZS ), LDWV ) * * ==== Multiply by U12 ==== * CALL ZLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, $ LDWV ) CALL ZTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE, $ U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ), $ LDWV ) * * ==== Multiply by U11 ==== * CALL ZGEMM( 'N', 'N', JLEN, I2, J2, ONE, $ Z( JROW, INCOL+1 ), LDZ, U, LDU, ONE, $ WV, LDWV ) * * ==== Copy left of Z to right of scratch ==== * CALL ZLACPY( 'ALL', JLEN, J2, Z( JROW, INCOL+1 ), $ LDZ, WV( 1, 1+I2 ), LDWV ) * * ==== Multiply by U21 ==== * CALL ZTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE, $ U( 1, I2+1 ), LDU, WV( 1, 1+I2 ), $ LDWV ) * * ==== Multiply by U22 ==== * CALL ZGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE, $ Z( JROW, INCOL+1+J2 ), LDZ, $ U( J2+1, I2+1 ), LDU, ONE, $ WV( 1, 1+I2 ), LDWV ) * * ==== Copy the result back to Z ==== * CALL ZLACPY( 'ALL', JLEN, KDU, WV, LDWV, $ Z( JROW, INCOL+1 ), LDZ ) 200 CONTINUE END IF END IF END IF 210 CONTINUE * * ==== End of ZLAQR5 ==== * END |