ZLARFT
Purpose
ZLARFT forms the triangular factor T of a complex block reflector H
of order n, which is defined as a product of k elementary reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V**H
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V**H * T * V
of order n, which is defined as a product of k elementary reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V**H
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V**H * T * V
Arguments
| DIRECT | 
 
(input) CHARACTER*1
 
Specifies the order in which the elementary reflectors are 
multiplied to form the block reflector: = 'F': H = H(1) H(2) . . . H(k) (Forward) = 'B': H = H(k) . . . H(2) H(1) (Backward)  | 
| STOREV | 
 
(input) CHARACTER*1
 
Specifies how the vectors which define the elementary 
reflectors are stored (see also Further Details): = 'C': columnwise = 'R': rowwise  | 
| N | 
 
(input) INTEGER
 
The order of the block reflector H. N >= 0. 
 | 
| K | 
 
(input) INTEGER
 
The order of the triangular factor T (= the number of 
elementary reflectors). K >= 1.  | 
| V | 
 
(input/output) COMPLEX*16 array, dimension
 
                     (LDV,K) if STOREV = 'C' 
(LDV,N) if STOREV = 'R' The matrix V. See further details.  | 
| LDV | 
 
(input) INTEGER
 
The leading dimension of the array V. 
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.  | 
| TAU | 
 
(input) COMPLEX*16 array, dimension (K)
 
TAU(i) must contain the scalar factor of the elementary 
reflector H(i).  | 
| T | 
 
(output) COMPLEX*16 array, dimension (LDT,K)
 
The k by k triangular factor T of the block reflector. 
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is lower triangular. The rest of the array is not used.  | 
| LDT | 
 
(input) INTEGER
 
The leading dimension of the array T. LDT >= K. 
 | 
Further Details
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )