1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
SUBROUTINE ZLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER SIDE INTEGER INCV, L, LDC, M, N COMPLEX*16 TAU * .. * .. Array Arguments .. COMPLEX*16 C( LDC, * ), V( * ), WORK( * ) * .. * * Purpose * ======= * * ZLARZ applies a complex elementary reflector H to a complex * M-by-N matrix C, from either the left or the right. H is represented * in the form * * H = I - tau * v * v**H * * where tau is a complex scalar and v is a complex vector. * * If tau = 0, then H is taken to be the unit matrix. * * To apply H**H (the conjugate transpose of H), supply conjg(tau) instead * tau. * * H is a product of k elementary reflectors as returned by ZTZRZF. * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'L': form H * C * = 'R': form C * H * * M (input) INTEGER * The number of rows of the matrix C. * * N (input) INTEGER * The number of columns of the matrix C. * * L (input) INTEGER * The number of entries of the vector V containing * the meaningful part of the Householder vectors. * If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. * * V (input) COMPLEX*16 array, dimension (1+(L-1)*abs(INCV)) * The vector v in the representation of H as returned by * ZTZRZF. V is not used if TAU = 0. * * INCV (input) INTEGER * The increment between elements of v. INCV <> 0. * * TAU (input) COMPLEX*16 * The value tau in the representation of H. * * C (input/output) COMPLEX*16 array, dimension (LDC,N) * On entry, the M-by-N matrix C. * On exit, C is overwritten by the matrix H * C if SIDE = 'L', * or C * H if SIDE = 'R'. * * LDC (input) INTEGER * The leading dimension of the array C. LDC >= max(1,M). * * WORK (workspace) COMPLEX*16 array, dimension * (N) if SIDE = 'L' * or (M) if SIDE = 'R' * * Further Details * =============== * * Based on contributions by * A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA * * ===================================================================== * * .. Parameters .. COMPLEX*16 ONE, ZERO PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ), $ ZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. External Subroutines .. EXTERNAL ZAXPY, ZCOPY, ZGEMV, ZGERC, ZGERU, ZLACGV * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Executable Statements .. * IF( LSAME( SIDE, 'L' ) ) THEN * * Form H * C * IF( TAU.NE.ZERO ) THEN * * w( 1:n ) = conjg( C( 1, 1:n ) ) * CALL ZCOPY( N, C, LDC, WORK, 1 ) CALL ZLACGV( N, WORK, 1 ) * * w( 1:n ) = conjg( w( 1:n ) + C( m-l+1:m, 1:n )**H * v( 1:l ) ) * CALL ZGEMV( 'Conjugate transpose', L, N, ONE, C( M-L+1, 1 ), $ LDC, V, INCV, ONE, WORK, 1 ) CALL ZLACGV( N, WORK, 1 ) * * C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n ) * CALL ZAXPY( N, -TAU, WORK, 1, C, LDC ) * * C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ... * tau * v( 1:l ) * w( 1:n )**H * CALL ZGERU( L, N, -TAU, V, INCV, WORK, 1, C( M-L+1, 1 ), $ LDC ) END IF * ELSE * * Form C * H * IF( TAU.NE.ZERO ) THEN * * w( 1:m ) = C( 1:m, 1 ) * CALL ZCOPY( M, C, 1, WORK, 1 ) * * w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l ) * CALL ZGEMV( 'No transpose', M, L, ONE, C( 1, N-L+1 ), LDC, $ V, INCV, ONE, WORK, 1 ) * * C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m ) * CALL ZAXPY( M, -TAU, WORK, 1, C, 1 ) * * C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ... * tau * w( 1:m ) * v( 1:l )**H * CALL ZGERC( M, L, -TAU, WORK, 1, V, INCV, C( 1, N-L+1 ), $ LDC ) * END IF * END IF * RETURN * * End of ZLARZ * END |