1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
SUBROUTINE ZLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER DIRECT, STOREV INTEGER K, LDT, LDV, N * .. * .. Array Arguments .. COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * ) * .. * * Purpose * ======= * * ZLARZT forms the triangular factor T of a complex block reflector * H of order > n, which is defined as a product of k elementary * reflectors. * * If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; * * If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. * * If STOREV = 'C', the vector which defines the elementary reflector * H(i) is stored in the i-th column of the array V, and * * H = I - V * T * V**H * * If STOREV = 'R', the vector which defines the elementary reflector * H(i) is stored in the i-th row of the array V, and * * H = I - V**H * T * V * * Currently, only STOREV = 'R' and DIRECT = 'B' are supported. * * Arguments * ========= * * DIRECT (input) CHARACTER*1 * Specifies the order in which the elementary reflectors are * multiplied to form the block reflector: * = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) * = 'B': H = H(k) . . . H(2) H(1) (Backward) * * STOREV (input) CHARACTER*1 * Specifies how the vectors which define the elementary * reflectors are stored (see also Further Details): * = 'C': columnwise (not supported yet) * = 'R': rowwise * * N (input) INTEGER * The order of the block reflector H. N >= 0. * * K (input) INTEGER * The order of the triangular factor T (= the number of * elementary reflectors). K >= 1. * * V (input/output) COMPLEX*16 array, dimension * (LDV,K) if STOREV = 'C' * (LDV,N) if STOREV = 'R' * The matrix V. See further details. * * LDV (input) INTEGER * The leading dimension of the array V. * If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. * * TAU (input) COMPLEX*16 array, dimension (K) * TAU(i) must contain the scalar factor of the elementary * reflector H(i). * * T (output) COMPLEX*16 array, dimension (LDT,K) * The k by k triangular factor T of the block reflector. * If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is * lower triangular. The rest of the array is not used. * * LDT (input) INTEGER * The leading dimension of the array T. LDT >= K. * * Further Details * =============== * * Based on contributions by * A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA * * The shape of the matrix V and the storage of the vectors which define * the H(i) is best illustrated by the following example with n = 5 and * k = 3. The elements equal to 1 are not stored; the corresponding * array elements are modified but restored on exit. The rest of the * array is not used. * * DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': * * ______V_____ * ( v1 v2 v3 ) / \ * ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 ) * V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 ) * ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 ) * ( v1 v2 v3 ) * . . . * . . . * 1 . . * 1 . * 1 * * DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': * * ______V_____ * 1 / \ * . 1 ( 1 . . . . v1 v1 v1 v1 v1 ) * . . 1 ( . 1 . . . v2 v2 v2 v2 v2 ) * . . . ( . . 1 . . v3 v3 v3 v3 v3 ) * . . . * ( v1 v2 v3 ) * ( v1 v2 v3 ) * V = ( v1 v2 v3 ) * ( v1 v2 v3 ) * ( v1 v2 v3 ) * * ===================================================================== * * .. Parameters .. COMPLEX*16 ZERO PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER I, INFO, J * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGEMV, ZLACGV, ZTRMV * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Executable Statements .. * * Check for currently supported options * INFO = 0 IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN INFO = -1 ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN INFO = -2 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLARZT', -INFO ) RETURN END IF * DO 20 I = K, 1, -1 IF( TAU( I ).EQ.ZERO ) THEN * * H(i) = I * DO 10 J = I, K T( J, I ) = ZERO 10 CONTINUE ELSE * * general case * IF( I.LT.K ) THEN * * T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)**H * CALL ZLACGV( N, V( I, 1 ), LDV ) CALL ZGEMV( 'No transpose', K-I, N, -TAU( I ), $ V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO, $ T( I+1, I ), 1 ) CALL ZLACGV( N, V( I, 1 ), LDV ) * * T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i) * CALL ZTRMV( 'Lower', 'No transpose', 'Non-unit', K-I, $ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) END IF T( I, I ) = TAU( I ) END IF 20 CONTINUE RETURN * * End of ZLARZT * END |