1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
SUBROUTINE ZLATZM( SIDE, M, N, V, INCV, TAU, C1, C2, LDC, WORK )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER SIDE INTEGER INCV, LDC, M, N COMPLEX*16 TAU * .. * .. Array Arguments .. COMPLEX*16 C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * ) * .. * * Purpose * ======= * * This routine is deprecated and has been replaced by routine ZUNMRZ. * * ZLATZM applies a Householder matrix generated by ZTZRQF to a matrix. * * Let P = I - tau*u*u**H, u = ( 1 ), * ( v ) * where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if * SIDE = 'R'. * * If SIDE equals 'L', let * C = [ C1 ] 1 * [ C2 ] m-1 * n * Then C is overwritten by P*C. * * If SIDE equals 'R', let * C = [ C1, C2 ] m * 1 n-1 * Then C is overwritten by C*P. * * Arguments * ========= * * SIDE (input) CHARACTER*1 * = 'L': form P * C * = 'R': form C * P * * M (input) INTEGER * The number of rows of the matrix C. * * N (input) INTEGER * The number of columns of the matrix C. * * V (input) COMPLEX*16 array, dimension * (1 + (M-1)*abs(INCV)) if SIDE = 'L' * (1 + (N-1)*abs(INCV)) if SIDE = 'R' * The vector v in the representation of P. V is not used * if TAU = 0. * * INCV (input) INTEGER * The increment between elements of v. INCV <> 0 * * TAU (input) COMPLEX*16 * The value tau in the representation of P. * * C1 (input/output) COMPLEX*16 array, dimension * (LDC,N) if SIDE = 'L' * (M,1) if SIDE = 'R' * On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1 * if SIDE = 'R'. * * On exit, the first row of P*C if SIDE = 'L', or the first * column of C*P if SIDE = 'R'. * * C2 (input/output) COMPLEX*16 array, dimension * (LDC, N) if SIDE = 'L' * (LDC, N-1) if SIDE = 'R' * On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the * m x (n - 1) matrix C2 if SIDE = 'R'. * * On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P * if SIDE = 'R'. * * LDC (input) INTEGER * The leading dimension of the arrays C1 and C2. * LDC >= max(1,M). * * WORK (workspace) COMPLEX*16 array, dimension * (N) if SIDE = 'L' * (M) if SIDE = 'R' * * ===================================================================== * * .. Parameters .. COMPLEX*16 ONE, ZERO PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ), $ ZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. External Subroutines .. EXTERNAL ZAXPY, ZCOPY, ZGEMV, ZGERC, ZGERU, ZLACGV * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Intrinsic Functions .. INTRINSIC MIN * .. * .. Executable Statements .. * IF( ( MIN( M, N ).EQ.0 ) .OR. ( TAU.EQ.ZERO ) ) $ RETURN * IF( LSAME( SIDE, 'L' ) ) THEN * * w := ( C1 + v**H * C2 )**H * CALL ZCOPY( N, C1, LDC, WORK, 1 ) CALL ZLACGV( N, WORK, 1 ) CALL ZGEMV( 'Conjugate transpose', M-1, N, ONE, C2, LDC, V, $ INCV, ONE, WORK, 1 ) * * [ C1 ] := [ C1 ] - tau* [ 1 ] * w**H * [ C2 ] [ C2 ] [ v ] * CALL ZLACGV( N, WORK, 1 ) CALL ZAXPY( N, -TAU, WORK, 1, C1, LDC ) CALL ZGERU( M-1, N, -TAU, V, INCV, WORK, 1, C2, LDC ) * ELSE IF( LSAME( SIDE, 'R' ) ) THEN * * w := C1 + C2 * v * CALL ZCOPY( M, C1, 1, WORK, 1 ) CALL ZGEMV( 'No transpose', M, N-1, ONE, C2, LDC, V, INCV, ONE, $ WORK, 1 ) * * [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v**H] * CALL ZAXPY( M, -TAU, WORK, 1, C1, 1 ) CALL ZGERC( M, N-1, -TAU, WORK, 1, V, INCV, C2, LDC ) END IF * RETURN * * End of ZLATZM * END |