1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
SUBROUTINE ZLAUUM( UPLO, N, A, LDA, INFO )
* * -- LAPACK auxiliary routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, N * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ) * .. * * Purpose * ======= * * ZLAUUM computes the product U * U**H or L**H * L, where the triangular * factor U or L is stored in the upper or lower triangular part of * the array A. * * If UPLO = 'U' or 'u' then the upper triangle of the result is stored, * overwriting the factor U in A. * If UPLO = 'L' or 'l' then the lower triangle of the result is stored, * overwriting the factor L in A. * * This is the blocked form of the algorithm, calling Level 3 BLAS. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the triangular factor stored in the array A * is upper or lower triangular: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The order of the triangular factor U or L. N >= 0. * * A (input/output) COMPLEX*16 array, dimension (LDA,N) * On entry, the triangular factor U or L. * On exit, if UPLO = 'U', the upper triangle of A is * overwritten with the upper triangle of the product U * U**H; * if UPLO = 'L', the lower triangle of A is overwritten with * the lower triangle of the product L**H * L. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D+0 ) COMPLEX*16 CONE PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER I, IB, NB * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGEMM, ZHERK, ZLAUU2, ZTRMM * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLAUUM', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Determine the block size for this environment. * NB = ILAENV( 1, 'ZLAUUM', UPLO, N, -1, -1, -1 ) * IF( NB.LE.1 .OR. NB.GE.N ) THEN * * Use unblocked code * CALL ZLAUU2( UPLO, N, A, LDA, INFO ) ELSE * * Use blocked code * IF( UPPER ) THEN * * Compute the product U * U**H. * DO 10 I = 1, N, NB IB = MIN( NB, N-I+1 ) CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose', $ 'Non-unit', I-1, IB, CONE, A( I, I ), LDA, $ A( 1, I ), LDA ) CALL ZLAUU2( 'Upper', IB, A( I, I ), LDA, INFO ) IF( I+IB.LE.N ) THEN CALL ZGEMM( 'No transpose', 'Conjugate transpose', $ I-1, IB, N-I-IB+1, CONE, A( 1, I+IB ), $ LDA, A( I, I+IB ), LDA, CONE, A( 1, I ), $ LDA ) CALL ZHERK( 'Upper', 'No transpose', IB, N-I-IB+1, $ ONE, A( I, I+IB ), LDA, ONE, A( I, I ), $ LDA ) END IF 10 CONTINUE ELSE * * Compute the product L**H * L. * DO 20 I = 1, N, NB IB = MIN( NB, N-I+1 ) CALL ZTRMM( 'Left', 'Lower', 'Conjugate transpose', $ 'Non-unit', IB, I-1, CONE, A( I, I ), LDA, $ A( I, 1 ), LDA ) CALL ZLAUU2( 'Lower', IB, A( I, I ), LDA, INFO ) IF( I+IB.LE.N ) THEN CALL ZGEMM( 'Conjugate transpose', 'No transpose', IB, $ I-1, N-I-IB+1, CONE, A( I+IB, I ), LDA, $ A( I+IB, 1 ), LDA, CONE, A( I, 1 ), LDA ) CALL ZHERK( 'Lower', 'Conjugate transpose', IB, $ N-I-IB+1, ONE, A( I+IB, I ), LDA, ONE, $ A( I, I ), LDA ) END IF 20 CONTINUE END IF END IF * RETURN * * End of ZLAUUM * END |