ZPBCON
   Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
Purpose
ZPBCON estimates the reciprocal of the condition number (in the
1-norm) of a complex Hermitian positive definite band matrix using
the Cholesky factorization A = U**H*U or A = L*L**H computed by
ZPBTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
1-norm) of a complex Hermitian positive definite band matrix using
the Cholesky factorization A = U**H*U or A = L*L**H computed by
ZPBTRF.
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
Arguments
| UPLO | 
(input) CHARACTER*1
 
= 'U':  Upper triangular factor stored in AB; = 'L': Lower triangular factor stored in AB. | 
| N | 
(input) INTEGER
 
The order of the matrix A.  N >= 0. | 
| KD | 
(input) INTEGER
 
The number of superdiagonals of the matrix A if UPLO = 'U', or the number of sub-diagonals if UPLO = 'L'. KD >= 0. | 
| AB | 
(input) COMPLEX*16 array, dimension (LDAB,N)
 
The triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H of the band matrix A, stored in the first KD+1 rows of the array. The j-th column of U or L is stored in the j-th column of the array AB as follows: if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). | 
| LDAB | 
(input) INTEGER
 
The leading dimension of the array AB.  LDAB >= KD+1. | 
| ANORM | 
(input) DOUBLE PRECISION
 
The 1-norm (or infinity-norm) of the Hermitian band matrix A. | 
| RCOND | 
(output) DOUBLE PRECISION
 
The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine. | 
| WORK | 
(workspace) COMPLEX*16 array, dimension (2*N)
 | 
| RWORK | 
(workspace) DOUBLE PRECISION array, dimension (N)
 | 
| INFO | 
(output) INTEGER
 
= 0:  successful exit < 0: if INFO = -i, the i-th argument had an illegal value |