1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
SUBROUTINE ZPBEQU( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, INFO )
* * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, KD, LDAB, N DOUBLE PRECISION AMAX, SCOND * .. * .. Array Arguments .. DOUBLE PRECISION S( * ) COMPLEX*16 AB( LDAB, * ) * .. * * Purpose * ======= * * ZPBEQU computes row and column scalings intended to equilibrate a * Hermitian positive definite band matrix A and reduce its condition * number (with respect to the two-norm). S contains the scale factors, * S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with * elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This * choice of S puts the condition number of B within a factor N of the * smallest possible condition number over all possible diagonal * scalings. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangular of A is stored; * = 'L': Lower triangular of A is stored. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KD >= 0. * * AB (input) COMPLEX*16 array, dimension (LDAB,N) * The upper or lower triangle of the Hermitian band matrix A, * stored in the first KD+1 rows of the array. The j-th column * of A is stored in the j-th column of the array AB as follows: * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). * * LDAB (input) INTEGER * The leading dimension of the array A. LDAB >= KD+1. * * S (output) DOUBLE PRECISION array, dimension (N) * If INFO = 0, S contains the scale factors for A. * * SCOND (output) DOUBLE PRECISION * If INFO = 0, S contains the ratio of the smallest S(i) to * the largest S(i). If SCOND >= 0.1 and AMAX is neither too * large nor too small, it is not worth scaling by S. * * AMAX (output) DOUBLE PRECISION * Absolute value of largest matrix element. If AMAX is very * close to overflow or very close to underflow, the matrix * should be scaled. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: if INFO = i, the i-th diagonal element is nonpositive. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER I, J DOUBLE PRECISION SMIN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( KD.LT.0 ) THEN INFO = -3 ELSE IF( LDAB.LT.KD+1 ) THEN INFO = -5 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZPBEQU', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) THEN SCOND = ONE AMAX = ZERO RETURN END IF * IF( UPPER ) THEN J = KD + 1 ELSE J = 1 END IF * * Initialize SMIN and AMAX. * S( 1 ) = DBLE( AB( J, 1 ) ) SMIN = S( 1 ) AMAX = S( 1 ) * * Find the minimum and maximum diagonal elements. * DO 10 I = 2, N S( I ) = DBLE( AB( J, I ) ) SMIN = MIN( SMIN, S( I ) ) AMAX = MAX( AMAX, S( I ) ) 10 CONTINUE * IF( SMIN.LE.ZERO ) THEN * * Find the first non-positive diagonal element and return. * DO 20 I = 1, N IF( S( I ).LE.ZERO ) THEN INFO = I RETURN END IF 20 CONTINUE ELSE * * Set the scale factors to the reciprocals * of the diagonal elements. * DO 30 I = 1, N S( I ) = ONE / SQRT( S( I ) ) 30 CONTINUE * * Compute SCOND = min(S(I)) / max(S(I)) * SCOND = SQRT( SMIN ) / SQRT( AMAX ) END IF RETURN * * End of ZPBEQU * END |