ZPOEQUB
Purpose
ZPOEQUB computes row and column scalings intended to equilibrate a
symmetric positive definite matrix A and reduce its condition number
(with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
symmetric positive definite matrix A and reduce its condition number
(with respect to the two-norm). S contains the scale factors,
S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
choice of S puts the condition number of B within a factor N of the
smallest possible condition number over all possible diagonal
scalings.
Arguments
| N | 
 
(input) INTEGER
 
The order of the matrix A.  N >= 0. 
 | 
| A | 
 
(input) COMPLEX*16 array, dimension (LDA,N)
 
The N-by-N symmetric positive definite matrix whose scaling 
factors are to be computed. Only the diagonal elements of A are referenced.  | 
| LDA | 
 
(input) INTEGER
 
The leading dimension of the array A.  LDA >= max(1,N). 
 | 
| S | 
 
(output) DOUBLE PRECISION array, dimension (N)
 
If INFO = 0, S contains the scale factors for A. 
 | 
| SCOND | 
 
(output) DOUBLE PRECISION
 
If INFO = 0, S contains the ratio of the smallest S(i) to 
the largest S(i). If SCOND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by S.  | 
| AMAX | 
 
(output) DOUBLE PRECISION
 
Absolute value of largest matrix element.  If AMAX is very 
close to overflow or very close to underflow, the matrix should be scaled.  | 
| INFO | 
 
(output) INTEGER
 
= 0:  successful exit 
< 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the i-th diagonal element is nonpositive.  |