ZPTTRS
Purpose
ZPTTRS solves a tridiagonal system of the form
A * X = B
using the factorization A = U**H *D* U or A = L*D*L**H computed by ZPTTRF.
D is a diagonal matrix specified in the vector D, U (or L) is a unit
bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
the vector E, and X and B are N by NRHS matrices.
A * X = B
using the factorization A = U**H *D* U or A = L*D*L**H computed by ZPTTRF.
D is a diagonal matrix specified in the vector D, U (or L) is a unit
bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
the vector E, and X and B are N by NRHS matrices.
Arguments
| UPLO | 
(input) CHARACTER*1
 
Specifies the form of the factorization and whether the vector E is the superdiagonal of the upper bidiagonal factor U or the subdiagonal of the lower bidiagonal factor L. = 'U': A = U**H *D*U, E is the superdiagonal of U = 'L': A = L*D*L**H, E is the subdiagonal of L | 
| N | 
(input) INTEGER
 
The order of the tridiagonal matrix A.  N >= 0. | 
| NRHS | 
(input) INTEGER
 
The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. | 
| D | 
(input) DOUBLE PRECISION array, dimension (N)
 
The n diagonal elements of the diagonal matrix D from the factorization A = U**H *D*U or A = L*D*L**H. | 
| E | 
(input) COMPLEX*16 array, dimension (N-1)
 
If UPLO = 'U', the (n-1) superdiagonal elements of the unit bidiagonal factor U from the factorization A = U**H*D*U. If UPLO = 'L', the (n-1) subdiagonal elements of the unit bidiagonal factor L from the factorization A = L*D*L**H. | 
| B | 
(input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
 
On entry, the right hand side vectors B for the system of linear equations. On exit, the solution vectors, X. | 
| LDB | 
(input) INTEGER
 
The leading dimension of the array B.  LDB >= max(1,N). | 
| INFO | 
(output) INTEGER
 
= 0: successful exit < 0: if INFO = -k, the k-th argument had an illegal value |