1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
SUBROUTINE ZSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * -- Written by Julie Langou of the Univ. of TN -- * * @precisions normal z -> s d c * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, LWORK, N * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX*16 A( LDA, * ), WORK( * ) * .. * * Purpose * ======= * * ZSYTRI2 computes the inverse of a COMPLEX*16 hermitian indefinite matrix * A using the factorization A = U*D*U**T or A = L*D*L**T computed by * ZSYTRF. ZSYTRI2 sets the LEADING DIMENSION of the workspace * before calling ZSYTRI2X that actually computes the inverse. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the details of the factorization are stored * as an upper or lower triangular matrix. * = 'U': Upper triangular, form is A = U*D*U**T; * = 'L': Lower triangular, form is A = L*D*L**T. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) COMPLEX*16 array, dimension (LDA,N) * On entry, the NB diagonal matrix D and the multipliers * used to obtain the factor U or L as computed by ZSYTRF. * * On exit, if INFO = 0, the (symmetric) inverse of the original * matrix. If UPLO = 'U', the upper triangular part of the * inverse is formed and the part of A below the diagonal is not * referenced; if UPLO = 'L' the lower triangular part of the * inverse is formed and the part of A above the diagonal is * not referenced. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * IPIV (input) INTEGER array, dimension (N) * Details of the interchanges and the NB structure of D * as determined by ZSYTRF. * * WORK (workspace) COMPLEX*16 array, dimension (N+NB+1)*(NB+3) * * LWORK (input) INTEGER * The dimension of the array WORK. * WORK is size >= (N+NB+1)*(NB+3) * If LDWORK = -1, then a workspace query is assumed; the routine * calculates: * - the optimal size of the WORK array, returns * this value as the first entry of the WORK array, * - and no error message related to LDWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its * inverse could not be computed. * * ===================================================================== * * .. Local Scalars .. LOGICAL UPPER, LQUERY INTEGER MINSIZE, NBMAX * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV EXTERNAL LSAME, ILAENV * .. * .. External Subroutines .. EXTERNAL ZSYTRI2X * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) * Get blocksize NBMAX = ILAENV( 1, 'ZSYTRF', UPLO, N, -1, -1, -1 ) IF ( NBMAX .GE. N ) THEN MINSIZE = N ELSE MINSIZE = (N+NBMAX+1)*(NBMAX+3) END IF * IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 ELSE IF (LWORK .LT. MINSIZE .AND. .NOT.LQUERY ) THEN INFO = -7 END IF * * Quick return if possible * * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZSYTRI2', -INFO ) RETURN ELSE IF( LQUERY ) THEN WORK(1)=MINSIZE RETURN END IF IF( N.EQ.0 ) $ RETURN IF( NBMAX .GE. N ) THEN CALL ZSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO ) ELSE CALL ZSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NBMAX, INFO ) END IF RETURN * * End of ZSYTRI2 * END |