1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
SUBROUTINE ZSYTRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
$ WORK, INFO ) * * -- LAPACK PROTOTYPE routine (version 3.3.1) -- * * -- Written by Julie Langou of the Univ. of TN -- * -- April 2011 -- * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, LDB, N, NRHS * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) * .. * * Purpose * ======= * * ZSYTRS2 solves a system of linear equations A*X = B with a real * symmetric matrix A using the factorization A = U*D*U**T or * A = L*D*L**T computed by ZSYTRF and converted by ZSYCONV. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the details of the factorization are stored * as an upper or lower triangular matrix. * = 'U': Upper triangular, form is A = U*D*U**T; * = 'L': Lower triangular, form is A = L*D*L**T. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * A (input) DOUBLE COMPLEX array, dimension (LDA,N) * The block diagonal matrix D and the multipliers used to * obtain the factor U or L as computed by ZSYTRF. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * IPIV (input) INTEGER array, dimension (N) * Details of the interchanges and the block structure of D * as determined by ZSYTRF. * * B (input/output) DOUBLE COMPLEX array, dimension (LDB,NRHS) * On entry, the right hand side matrix B. * On exit, the solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * WORK (workspace) REAL array, dimension (N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. DOUBLE COMPLEX ONE PARAMETER ( ONE = (1.0D+0,0.0D+0) ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER I, IINFO, J, K, KP DOUBLE COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL ZSCAL, ZSYCONV, ZSWAP, ZTRSM, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NRHS.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZSYTRS2', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. NRHS.EQ.0 ) $ RETURN * * Convert A * CALL ZSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO ) * IF( UPPER ) THEN * * Solve A*X = B, where A = U*D*U**T. * * P**T * B K=N DO WHILE ( K .GE. 1 ) IF( IPIV( K ).GT.0 ) THEN * 1 x 1 diagonal block * Interchange rows K and IPIV(K). KP = IPIV( K ) IF( KP.NE.K ) $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) K=K-1 ELSE * 2 x 2 diagonal block * Interchange rows K-1 and -IPIV(K). KP = -IPIV( K ) IF( KP.EQ.-IPIV( K-1 ) ) $ CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB ) K=K-2 END IF END DO * * Compute (U \P**T * B) -> B [ (U \P**T * B) ] * CALL ZTRSM('L','U','N','U',N,NRHS,ONE,A,LDA,B,LDB) * * Compute D \ B -> B [ D \ (U \P**T * B) ] * I=N DO WHILE ( I .GE. 1 ) IF( IPIV(I) .GT. 0 ) THEN CALL ZSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB ) ELSEIF ( I .GT. 1) THEN IF ( IPIV(I-1) .EQ. IPIV(I) ) THEN AKM1K = WORK(I) AKM1 = A( I-1, I-1 ) / AKM1K AK = A( I, I ) / AKM1K DENOM = AKM1*AK - ONE DO 15 J = 1, NRHS BKM1 = B( I-1, J ) / AKM1K BK = B( I, J ) / AKM1K B( I-1, J ) = ( AK*BKM1-BK ) / DENOM B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM 15 CONTINUE I = I - 1 ENDIF ENDIF I = I - 1 END DO * * Compute (U**T \ B) -> B [ U**T \ (D \ (U \P**T * B) ) ] * CALL ZTRSM('L','U','T','U',N,NRHS,ONE,A,LDA,B,LDB) * * P * B [ P * (U**T \ (D \ (U \P**T * B) )) ] * K=1 DO WHILE ( K .LE. N ) IF( IPIV( K ).GT.0 ) THEN * 1 x 1 diagonal block * Interchange rows K and IPIV(K). KP = IPIV( K ) IF( KP.NE.K ) $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) K=K+1 ELSE * 2 x 2 diagonal block * Interchange rows K-1 and -IPIV(K). KP = -IPIV( K ) IF( K .LT. N .AND. KP.EQ.-IPIV( K+1 ) ) $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) K=K+2 ENDIF END DO * ELSE * * Solve A*X = B, where A = L*D*L**T. * * P**T * B K=1 DO WHILE ( K .LE. N ) IF( IPIV( K ).GT.0 ) THEN * 1 x 1 diagonal block * Interchange rows K and IPIV(K). KP = IPIV( K ) IF( KP.NE.K ) $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) K=K+1 ELSE * 2 x 2 diagonal block * Interchange rows K and -IPIV(K+1). KP = -IPIV( K+1 ) IF( KP.EQ.-IPIV( K ) ) $ CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB ) K=K+2 ENDIF END DO * * Compute (L \P**T * B) -> B [ (L \P**T * B) ] * CALL ZTRSM('L','L','N','U',N,NRHS,ONE,A,LDA,B,LDB) * * Compute D \ B -> B [ D \ (L \P**T * B) ] * I=1 DO WHILE ( I .LE. N ) IF( IPIV(I) .GT. 0 ) THEN CALL ZSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB ) ELSE AKM1K = WORK(I) AKM1 = A( I, I ) / AKM1K AK = A( I+1, I+1 ) / AKM1K DENOM = AKM1*AK - ONE DO 25 J = 1, NRHS BKM1 = B( I, J ) / AKM1K BK = B( I+1, J ) / AKM1K B( I, J ) = ( AK*BKM1-BK ) / DENOM B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM 25 CONTINUE I = I + 1 ENDIF I = I + 1 END DO * * Compute (L**T \ B) -> B [ L**T \ (D \ (L \P**T * B) ) ] * CALL ZTRSM('L','L','T','U',N,NRHS,ONE,A,LDA,B,LDB) * * P * B [ P * (L**T \ (D \ (L \P**T * B) )) ] * K=N DO WHILE ( K .GE. 1 ) IF( IPIV( K ).GT.0 ) THEN * 1 x 1 diagonal block * Interchange rows K and IPIV(K). KP = IPIV( K ) IF( KP.NE.K ) $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) K=K-1 ELSE * 2 x 2 diagonal block * Interchange rows K-1 and -IPIV(K). KP = -IPIV( K ) IF( K.GT.1 .AND. KP.EQ.-IPIV( K-1 ) ) $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) K=K-2 ENDIF END DO * END IF * * Revert A * CALL ZSYCONV( UPLO, 'R', N, A, LDA, IPIV, WORK, IINFO ) * RETURN * * End of ZSYTRS2 * END |