1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
SUBROUTINE ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
$ LDZ, IFST, ILST, INFO ) * * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. LOGICAL WANTQ, WANTZ INTEGER IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, N * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ), $ Z( LDZ, * ) * .. * * Purpose * ======= * * ZTGEXC reorders the generalized Schur decomposition of a complex * matrix pair (A,B), using an unitary equivalence transformation * (A, B) := Q * (A, B) * Z**H, so that the diagonal block of (A, B) with * row index IFST is moved to row ILST. * * (A, B) must be in generalized Schur canonical form, that is, A and * B are both upper triangular. * * Optionally, the matrices Q and Z of generalized Schur vectors are * updated. * * Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H * Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H * * Arguments * ========= * * WANTQ (input) LOGICAL * .TRUE. : update the left transformation matrix Q; * .FALSE.: do not update Q. * * WANTZ (input) LOGICAL * .TRUE. : update the right transformation matrix Z; * .FALSE.: do not update Z. * * N (input) INTEGER * The order of the matrices A and B. N >= 0. * * A (input/output) COMPLEX*16 array, dimension (LDA,N) * On entry, the upper triangular matrix A in the pair (A, B). * On exit, the updated matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * B (input/output) COMPLEX*16 array, dimension (LDB,N) * On entry, the upper triangular matrix B in the pair (A, B). * On exit, the updated matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * Q (input/output) COMPLEX*16 array, dimension (LDZ,N) * On entry, if WANTQ = .TRUE., the unitary matrix Q. * On exit, the updated matrix Q. * If WANTQ = .FALSE., Q is not referenced. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= 1; * If WANTQ = .TRUE., LDQ >= N. * * Z (input/output) COMPLEX*16 array, dimension (LDZ,N) * On entry, if WANTZ = .TRUE., the unitary matrix Z. * On exit, the updated matrix Z. * If WANTZ = .FALSE., Z is not referenced. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1; * If WANTZ = .TRUE., LDZ >= N. * * IFST (input) INTEGER * ILST (input/output) INTEGER * Specify the reordering of the diagonal blocks of (A, B). * The block with row index IFST is moved to row ILST, by a * sequence of swapping between adjacent blocks. * * INFO (output) INTEGER * =0: Successful exit. * <0: if INFO = -i, the i-th argument had an illegal value. * =1: The transformed matrix pair (A, B) would be too far * from generalized Schur form; the problem is ill- * conditioned. (A, B) may have been partially reordered, * and ILST points to the first row of the current * position of the block being moved. * * * Further Details * =============== * * Based on contributions by * Bo Kagstrom and Peter Poromaa, Department of Computing Science, * Umea University, S-901 87 Umea, Sweden. * * [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the * Generalized Real Schur Form of a Regular Matrix Pair (A, B), in * M.S. Moonen et al (eds), Linear Algebra for Large Scale and * Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. * * [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified * Eigenvalues of a Regular Matrix Pair (A, B) and Condition * Estimation: Theory, Algorithms and Software, Report * UMINF - 94.04, Department of Computing Science, Umea University, * S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. * To appear in Numerical Algorithms, 1996. * * [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software * for Solving the Generalized Sylvester Equation and Estimating the * Separation between Regular Matrix Pairs, Report UMINF - 93.23, * Department of Computing Science, Umea University, S-901 87 Umea, * Sweden, December 1993, Revised April 1994, Also as LAPACK working * Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, * 1996. * * ===================================================================== * * .. Local Scalars .. INTEGER HERE * .. * .. External Subroutines .. EXTERNAL XERBLA, ZTGEX2 * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Decode and test input arguments. INFO = 0 IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. ( LDQ.LT.MAX( 1, N ) ) ) THEN INFO = -9 ELSE IF( LDZ.LT.1 .OR. WANTZ .AND. ( LDZ.LT.MAX( 1, N ) ) ) THEN INFO = -11 ELSE IF( IFST.LT.1 .OR. IFST.GT.N ) THEN INFO = -12 ELSE IF( ILST.LT.1 .OR. ILST.GT.N ) THEN INFO = -13 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZTGEXC', -INFO ) RETURN END IF * * Quick return if possible * IF( N.LE.1 ) $ RETURN IF( IFST.EQ.ILST ) $ RETURN * IF( IFST.LT.ILST ) THEN * HERE = IFST * 10 CONTINUE * * Swap with next one below * CALL ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, $ HERE, INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF HERE = HERE + 1 IF( HERE.LT.ILST ) $ GO TO 10 HERE = HERE - 1 ELSE HERE = IFST - 1 * 20 CONTINUE * * Swap with next one above * CALL ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, $ HERE, INFO ) IF( INFO.NE.0 ) THEN ILST = HERE RETURN END IF HERE = HERE - 1 IF( HERE.GE.ILST ) $ GO TO 20 HERE = HERE + 1 END IF ILST = HERE RETURN * * End of ZTGEXC * END |