ZTRTRI
   November 2006
Purpose
ZTRTRI computes the inverse of a complex upper or lower triangular
matrix A.
This is the Level 3 BLAS version of the algorithm.
matrix A.
This is the Level 3 BLAS version of the algorithm.
Arguments
| UPLO | 
 
(input) CHARACTER*1
 
= 'U':  A is upper triangular; 
= 'L': A is lower triangular.  | 
| DIAG | 
 
(input) CHARACTER*1
 
= 'N':  A is non-unit triangular; 
= 'U': A is unit triangular.  | 
| N | 
 
(input) INTEGER
 
The order of the matrix A.  N >= 0. 
 | 
| A | 
 
(input/output) COMPLEX*16 array, dimension (LDA,N)
 
On entry, the triangular matrix A.  If UPLO = 'U', the 
leading N-by-N upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1. On exit, the (triangular) inverse of the original matrix, in the same storage format.  | 
| LDA | 
 
(input) INTEGER
 
The leading dimension of the array A.  LDA >= max(1,N). 
 | 
| INFO | 
 
(output) INTEGER
 
= 0: successful exit 
< 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, A(i,i) is exactly zero. The triangular matrix is singular and its inverse can not be computed.  |