1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
SUBROUTINE CBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
$ RWORK, RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER KD, LDA, LDPT, LDQ, M, N REAL RESID * .. * .. Array Arguments .. REAL D( * ), E( * ), RWORK( * ) COMPLEX A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ), $ WORK( * ) * .. * * Purpose * ======= * * CBDT01 reconstructs a general matrix A from its bidiagonal form * A = Q * B * P' * where Q (m by min(m,n)) and P' (min(m,n) by n) are unitary * matrices and B is bidiagonal. * * The test ratio to test the reduction is * RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS ) * where PT = P' and EPS is the machine precision. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrices A and Q. * * N (input) INTEGER * The number of columns of the matrices A and P'. * * KD (input) INTEGER * If KD = 0, B is diagonal and the array E is not referenced. * If KD = 1, the reduction was performed by xGEBRD; B is upper * bidiagonal if M >= N, and lower bidiagonal if M < N. * If KD = -1, the reduction was performed by xGBBRD; B is * always upper bidiagonal. * * A (input) COMPLEX array, dimension (LDA,N) * The m by n matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * Q (input) COMPLEX array, dimension (LDQ,N) * The m by min(m,n) unitary matrix Q in the reduction * A = Q * B * P'. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= max(1,M). * * D (input) REAL array, dimension (min(M,N)) * The diagonal elements of the bidiagonal matrix B. * * E (input) REAL array, dimension (min(M,N)-1) * The superdiagonal elements of the bidiagonal matrix B if * m >= n, or the subdiagonal elements of B if m < n. * * PT (input) COMPLEX array, dimension (LDPT,N) * The min(m,n) by n unitary matrix P' in the reduction * A = Q * B * P'. * * LDPT (input) INTEGER * The leading dimension of the array PT. * LDPT >= max(1,min(M,N)). * * WORK (workspace) COMPLEX array, dimension (M+N) * * RWORK (workspace) REAL array, dimension (M) * * RESID (output) REAL * The test ratio: norm(A - Q * B * P') / ( n * norm(A) * EPS ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER I, J REAL ANORM, EPS * .. * .. External Functions .. REAL CLANGE, SCASUM, SLAMCH EXTERNAL CLANGE, SCASUM, SLAMCH * .. * .. External Subroutines .. EXTERNAL CCOPY, CGEMV * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, MAX, MIN, REAL * .. * .. Executable Statements .. * * Quick return if possible * IF( M.LE.0 .OR. N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Compute A - Q * B * P' one column at a time. * RESID = ZERO IF( KD.NE.0 ) THEN * * B is bidiagonal. * IF( KD.NE.0 .AND. M.GE.N ) THEN * * B is upper bidiagonal and M >= N. * DO 20 J = 1, N CALL CCOPY( M, A( 1, J ), 1, WORK, 1 ) DO 10 I = 1, N - 1 WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J ) 10 CONTINUE WORK( M+N ) = D( N )*PT( N, J ) CALL CGEMV( 'No transpose', M, N, -CMPLX( ONE ), Q, LDQ, $ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 ) RESID = MAX( RESID, SCASUM( M, WORK, 1 ) ) 20 CONTINUE ELSE IF( KD.LT.0 ) THEN * * B is upper bidiagonal and M < N. * DO 40 J = 1, N CALL CCOPY( M, A( 1, J ), 1, WORK, 1 ) DO 30 I = 1, M - 1 WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J ) 30 CONTINUE WORK( M+M ) = D( M )*PT( M, J ) CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), Q, LDQ, $ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 ) RESID = MAX( RESID, SCASUM( M, WORK, 1 ) ) 40 CONTINUE ELSE * * B is lower bidiagonal. * DO 60 J = 1, N CALL CCOPY( M, A( 1, J ), 1, WORK, 1 ) WORK( M+1 ) = D( 1 )*PT( 1, J ) DO 50 I = 2, M WORK( M+I ) = E( I-1 )*PT( I-1, J ) + $ D( I )*PT( I, J ) 50 CONTINUE CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), Q, LDQ, $ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 ) RESID = MAX( RESID, SCASUM( M, WORK, 1 ) ) 60 CONTINUE END IF ELSE * * B is diagonal. * IF( M.GE.N ) THEN DO 80 J = 1, N CALL CCOPY( M, A( 1, J ), 1, WORK, 1 ) DO 70 I = 1, N WORK( M+I ) = D( I )*PT( I, J ) 70 CONTINUE CALL CGEMV( 'No transpose', M, N, -CMPLX( ONE ), Q, LDQ, $ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 ) RESID = MAX( RESID, SCASUM( M, WORK, 1 ) ) 80 CONTINUE ELSE DO 100 J = 1, N CALL CCOPY( M, A( 1, J ), 1, WORK, 1 ) DO 90 I = 1, M WORK( M+I ) = D( I )*PT( I, J ) 90 CONTINUE CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), Q, LDQ, $ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 ) RESID = MAX( RESID, SCASUM( M, WORK, 1 ) ) 100 CONTINUE END IF END IF * * Compute norm(A - Q * B * P') / ( n * norm(A) * EPS ) * ANORM = CLANGE( '1', M, N, A, LDA, RWORK ) EPS = SLAMCH( 'Precision' ) * IF( ANORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE IF( ANORM.GE.RESID ) THEN RESID = ( RESID / ANORM ) / ( REAL( N )*EPS ) ELSE IF( ANORM.LT.ONE ) THEN RESID = ( MIN( RESID, REAL( N )*ANORM ) / ANORM ) / $ ( REAL( N )*EPS ) ELSE RESID = MIN( RESID / ANORM, REAL( N ) ) / $ ( REAL( N )*EPS ) END IF END IF END IF * RETURN * * End of CBDT01 * END |