1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
SUBROUTINE CCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
$ LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK, $ RWORK, RESULT ) IMPLICIT NONE * * Originally xGSVTS * -- LAPACK test routine (version 3.3.0) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2010 * * Adapted to CCSDTS by * July 2010 * * .. Scalar Arguments .. INTEGER LDX, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q * .. * .. Array Arguments .. INTEGER IWORK( * ) REAL RESULT( 9 ), RWORK( * ), THETA( * ) COMPLEX U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), $ V2T( LDV2T, * ), WORK( LWORK ), X( LDX, * ), $ XF( LDX, * ) * .. * * Purpose * ======= * * CCSDTS tests CUNCSD, which, given an M-by-M partitioned unitary * matrix X, * Q M-Q * X = [ X11 X12 ] P , * [ X21 X22 ] M-P * * computes the CSD * * [ U1 ]**T * [ X11 X12 ] * [ V1 ] * [ U2 ] [ X21 X22 ] [ V2 ] * * [ I 0 0 | 0 0 0 ] * [ 0 C 0 | 0 -S 0 ] * [ 0 0 0 | 0 0 -I ] * = [---------------------] = [ D11 D12 ] . * [ 0 0 0 | I 0 0 ] [ D21 D22 ] * [ 0 S 0 | 0 C 0 ] * [ 0 0 I | 0 0 0 ] * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix X. M >= 0. * * P (input) INTEGER * The number of rows of the matrix X11. P >= 0. * * Q (input) INTEGER * The number of columns of the matrix X11. Q >= 0. * * X (input) COMPLEX array, dimension (LDX,M) * The M-by-M matrix X. * * XF (output) COMPLEX array, dimension (LDX,M) * Details of the CSD of X, as returned by CUNCSD; * see CUNCSD for further details. * * LDX (input) INTEGER * The leading dimension of the arrays X and XF. * LDX >= max( 1,M ). * * U1 (output) COMPLEX array, dimension(LDU1,P) * The P-by-P unitary matrix U1. * * LDU1 (input) INTEGER * The leading dimension of the array U1. LDU >= max(1,P). * * U2 (output) COMPLEX array, dimension(LDU2,M-P) * The (M-P)-by-(M-P) unitary matrix U2. * * LDU2 (input) INTEGER * The leading dimension of the array U2. LDU >= max(1,M-P). * * V1T (output) COMPLEX array, dimension(LDV1T,Q) * The Q-by-Q unitary matrix V1T. * * LDV1T (input) INTEGER * The leading dimension of the array V1T. LDV1T >= * max(1,Q). * * V2T (output) COMPLEX array, dimension(LDV2T,M-Q) * The (M-Q)-by-(M-Q) unitary matrix V2T. * * LDV2T (input) INTEGER * The leading dimension of the array V2T. LDV2T >= * max(1,M-Q). * * THETA (output) REAL array, dimension MIN(P,M-P,Q,M-Q) * The CS values of X; the essentially diagonal matrices C and * S are constructed from THETA; see subroutine CUNCSD for * details. * * IWORK (workspace) INTEGER array, dimension (M) * * WORK (workspace) COMPLEX array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK * * RWORK (workspace) REAL array * * RESULT (output) REAL array, dimension (9) * The test ratios: * RESULT(1) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) * RESULT(2) = norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) * RESULT(3) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) * RESULT(4) = norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) * RESULT(5) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP ) * RESULT(6) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP ) * RESULT(7) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP ) * RESULT(8) = norm( I - V2T'*V2T ) / ( MAX(1,M-Q)*ULP ) * RESULT(9) = 0 if THETA is in increasing order and * all angles are in [0,pi/2]; * = ULPINV otherwise. * ( EPS2 = MAX( norm( I - X'*X ) / M, ULP ). ) * * ===================================================================== * * .. Parameters .. REAL PIOVER2, REALONE, REALZERO PARAMETER ( PIOVER2 = 1.57079632679489662E0, $ REALONE = 1.0E0, REALZERO = 0.0E0 ) COMPLEX ZERO, ONE PARAMETER ( ZERO = (0.0E0,0.0E0), ONE = (1.0E0,0.0E0) ) * .. * .. Local Scalars .. INTEGER I, INFO, R REAL EPS2, RESID, ULP, ULPINV * .. * .. External Functions .. REAL SLAMCH, CLANGE, CLANHE EXTERNAL SLAMCH, CLANGE, CLANHE * .. * .. External Subroutines .. EXTERNAL CGEMM, CLACPY, CLASET, CUNCSD, CHERK * .. * .. Intrinsic Functions .. INTRINSIC REAL, MAX, MIN * .. * .. Executable Statements .. * ULP = SLAMCH( 'Precision' ) ULPINV = REALONE / ULP CALL CLASET( 'Full', M, M, ZERO, ONE, WORK, LDX ) CALL CHERK( 'Upper', 'Conjugate transpose', M, M, -ONE, X, LDX, $ ONE, WORK, LDX ) EPS2 = MAX( ULP, $ CLANGE( '1', M, M, WORK, LDX, RWORK ) / REAL( M ) ) R = MIN( P, M-P, Q, M-Q ) * * Copy the matrix X to the array XF. * CALL CLACPY( 'Full', M, M, X, LDX, XF, LDX ) * * Compute the CSD * CALL CUNCSD( 'Y', 'Y', 'Y', 'Y', 'N', 'D', M, P, Q, XF(1,1), LDX, $ XF(1,Q+1), LDX, XF(P+1,1), LDX, XF(P+1,Q+1), LDX, $ THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, $ WORK, LWORK, RWORK, 17*(R+2), IWORK, INFO ) * * Compute X := diag(U1,U2)'*X*diag(V1,V2) - [D11 D12; D21 D22] * CALL CGEMM( 'No transpose', 'Conjugate transpose', P, Q, Q, ONE, $ X, LDX, V1T, LDV1T, ZERO, WORK, LDX ) * CALL CGEMM( 'Conjugate transpose', 'No transpose', P, Q, P, ONE, $ U1, LDU1, WORK, LDX, ZERO, X, LDX ) * DO I = 1, MIN(P,Q)-R X(I,I) = X(I,I) - ONE END DO DO I = 1, R X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) = $ X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) - CMPLX( COS(THETA(I)), $ 0.0E0 ) END DO * CALL CGEMM( 'No transpose', 'Conjugate transpose', P, M-Q, M-Q, $ ONE, X(1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX ) * CALL CGEMM( 'Conjugate transpose', 'No transpose', P, M-Q, P, $ ONE, U1, LDU1, WORK, LDX, ZERO, X(1,Q+1), LDX ) * DO I = 1, MIN(P,M-Q)-R X(P-I+1,M-I+1) = X(P-I+1,M-I+1) + ONE END DO DO I = 1, R X(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) = $ X(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) + $ CMPLX( SIN(THETA(R-I+1)), 0.0E0 ) END DO * CALL CGEMM( 'No transpose', 'Conjugate transpose', M-P, Q, Q, ONE, $ X(P+1,1), LDX, V1T, LDV1T, ZERO, WORK, LDX ) * CALL CGEMM( 'Conjugate transpose', 'No transpose', M-P, Q, M-P, $ ONE, U2, LDU2, WORK, LDX, ZERO, X(P+1,1), LDX ) * DO I = 1, MIN(M-P,Q)-R X(M-I+1,Q-I+1) = X(M-I+1,Q-I+1) - ONE END DO DO I = 1, R X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) = $ X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) - $ CMPLX( SIN(THETA(R-I+1)), 0.0E0 ) END DO * CALL CGEMM( 'No transpose', 'Conjugate transpose', M-P, M-Q, M-Q, $ ONE, X(P+1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX ) * CALL CGEMM( 'Conjugate transpose', 'No transpose', M-P, M-Q, M-P, $ ONE, U2, LDU2, WORK, LDX, ZERO, X(P+1,Q+1), LDX ) * DO I = 1, MIN(M-P,M-Q)-R X(P+I,Q+I) = X(P+I,Q+I) - ONE END DO DO I = 1, R X(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) = $ X(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) - $ CMPLX( COS(THETA(I)), 0.0E0 ) END DO * * Compute norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) . * RESID = CLANGE( '1', P, Q, X, LDX, RWORK ) RESULT( 1 ) = ( RESID / REAL(MAX(1,P,Q)) ) / EPS2 * * Compute norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) . * RESID = CLANGE( '1', P, M-Q, X(1,Q+1), LDX, RWORK ) RESULT( 2 ) = ( RESID / REAL(MAX(1,P,M-Q)) ) / EPS2 * * Compute norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) . * RESID = CLANGE( '1', M-P, Q, X(P+1,1), LDX, RWORK ) RESULT( 3 ) = ( RESID / REAL(MAX(1,M-P,Q)) ) / EPS2 * * Compute norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) . * RESID = CLANGE( '1', M-P, M-Q, X(P+1,Q+1), LDX, RWORK ) RESULT( 4 ) = ( RESID / REAL(MAX(1,M-P,M-Q)) ) / EPS2 * * Compute I - U1'*U1 * CALL CLASET( 'Full', P, P, ZERO, ONE, WORK, LDU1 ) CALL CHERK( 'Upper', 'Conjugate transpose', P, P, -ONE, U1, LDU1, $ ONE, WORK, LDU1 ) * * Compute norm( I - U'*U ) / ( MAX(1,P) * ULP ) . * RESID = CLANHE( '1', 'Upper', P, WORK, LDU1, RWORK ) RESULT( 5 ) = ( RESID / REAL(MAX(1,P)) ) / ULP * * Compute I - U2'*U2 * CALL CLASET( 'Full', M-P, M-P, ZERO, ONE, WORK, LDU2 ) CALL CHERK( 'Upper', 'Conjugate transpose', M-P, M-P, -ONE, U2, $ LDU2, ONE, WORK, LDU2 ) * * Compute norm( I - U2'*U2 ) / ( MAX(1,M-P) * ULP ) . * RESID = CLANHE( '1', 'Upper', M-P, WORK, LDU2, RWORK ) RESULT( 6 ) = ( RESID / REAL(MAX(1,M-P)) ) / ULP * * Compute I - V1T*V1T' * CALL CLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDV1T ) CALL CHERK( 'Upper', 'No transpose', Q, Q, -ONE, V1T, LDV1T, ONE, $ WORK, LDV1T ) * * Compute norm( I - V1T*V1T' ) / ( MAX(1,Q) * ULP ) . * RESID = CLANHE( '1', 'Upper', Q, WORK, LDV1T, RWORK ) RESULT( 7 ) = ( RESID / REAL(MAX(1,Q)) ) / ULP * * Compute I - V2T*V2T' * CALL CLASET( 'Full', M-Q, M-Q, ZERO, ONE, WORK, LDV2T ) CALL CHERK( 'Upper', 'No transpose', M-Q, M-Q, -ONE, V2T, LDV2T, $ ONE, WORK, LDV2T ) * * Compute norm( I - V2T*V2T' ) / ( MAX(1,M-Q) * ULP ) . * RESID = CLANHE( '1', 'Upper', M-Q, WORK, LDV2T, RWORK ) RESULT( 8 ) = ( RESID / REAL(MAX(1,M-Q)) ) / ULP * * Check sorting * RESULT(9) = REALZERO DO I = 1, R IF( THETA(I).LT.REALZERO .OR. THETA(I).GT.PIOVER2 ) THEN RESULT(9) = ULPINV END IF IF( I.GT.1) THEN IF ( THETA(I).LT.THETA(I-1) ) THEN RESULT(9) = ULPINV END IF END IF END DO * RETURN * * End of CCSDTS * END |