1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
SUBROUTINE CGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
$ RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER ITYPE, LDA, LDB, LDU, LDV, N REAL RESULT * .. * .. Array Arguments .. REAL RWORK( * ) COMPLEX A( LDA, * ), B( LDB, * ), U( LDU, * ), $ V( LDV, * ), WORK( * ) * .. * * Purpose * ======= * * CGET51 generally checks a decomposition of the form * * A = U B V* * * where * means conjugate transpose and U and V are unitary. * * Specifically, if ITYPE=1 * * RESULT = | A - U B V* | / ( |A| n ulp ) * * If ITYPE=2, then: * * RESULT = | A - B | / ( |A| n ulp ) * * If ITYPE=3, then: * * RESULT = | I - UU* | / ( n ulp ) * * Arguments * ========= * * ITYPE (input) INTEGER * Specifies the type of tests to be performed. * =1: RESULT = | A - U B V* | / ( |A| n ulp ) * =2: RESULT = | A - B | / ( |A| n ulp ) * =3: RESULT = | I - UU* | / ( n ulp ) * * N (input) INTEGER * The size of the matrix. If it is zero, CGET51 does nothing. * It must be at least zero. * * A (input) COMPLEX array, dimension (LDA, N) * The original (unfactored) matrix. * * LDA (input) INTEGER * The leading dimension of A. It must be at least 1 * and at least N. * * B (input) COMPLEX array, dimension (LDB, N) * The factored matrix. * * LDB (input) INTEGER * The leading dimension of B. It must be at least 1 * and at least N. * * U (input) COMPLEX array, dimension (LDU, N) * The unitary matrix on the left-hand side in the * decomposition. * Not referenced if ITYPE=2 * * LDU (input) INTEGER * The leading dimension of U. LDU must be at least N and * at least 1. * * V (input) COMPLEX array, dimension (LDV, N) * The unitary matrix on the left-hand side in the * decomposition. * Not referenced if ITYPE=2 * * LDV (input) INTEGER * The leading dimension of V. LDV must be at least N and * at least 1. * * WORK (workspace) COMPLEX array, dimension (2*N**2) * * RWORK (workspace) REAL array, dimension (N) * * RESULT (output) REAL * The values computed by the test specified by ITYPE. The * value is currently limited to 1/ulp, to avoid overflow. * Errors are flagged by RESULT=10/ulp. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE, TEN PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 10.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER JCOL, JDIAG, JROW REAL ANORM, ULP, UNFL, WNORM * .. * .. External Functions .. REAL CLANGE, SLAMCH EXTERNAL CLANGE, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEMM, CLACPY * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Executable Statements .. * RESULT = ZERO IF( N.LE.0 ) $ RETURN * * Constants * UNFL = SLAMCH( 'Safe minimum' ) ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) * * Some Error Checks * IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN RESULT = TEN / ULP RETURN END IF * IF( ITYPE.LE.2 ) THEN * * Tests scaled by the norm(A) * ANORM = MAX( CLANGE( '1', N, N, A, LDA, RWORK ), UNFL ) * IF( ITYPE.EQ.1 ) THEN * * ITYPE=1: Compute W = A - UBV' * CALL CLACPY( ' ', N, N, A, LDA, WORK, N ) CALL CGEMM( 'N', 'N', N, N, N, CONE, U, LDU, B, LDB, CZERO, $ WORK( N**2+1 ), N ) * CALL CGEMM( 'N', 'C', N, N, N, -CONE, WORK( N**2+1 ), N, V, $ LDV, CONE, WORK, N ) * ELSE * * ITYPE=2: Compute W = A - B * CALL CLACPY( ' ', N, N, B, LDB, WORK, N ) * DO 20 JCOL = 1, N DO 10 JROW = 1, N WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) ) $ - A( JROW, JCOL ) 10 CONTINUE 20 CONTINUE END IF * * Compute norm(W)/ ( ulp*norm(A) ) * WNORM = CLANGE( '1', N, N, WORK, N, RWORK ) * IF( ANORM.GT.WNORM ) THEN RESULT = ( WNORM / ANORM ) / ( N*ULP ) ELSE IF( ANORM.LT.ONE ) THEN RESULT = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) ELSE RESULT = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP ) END IF END IF * ELSE * * Tests not scaled by norm(A) * * ITYPE=3: Compute UU' - I * CALL CGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, $ WORK, N ) * DO 30 JDIAG = 1, N WORK( ( N+1 )*( JDIAG-1 )+1 ) = WORK( ( N+1 )*( JDIAG-1 )+ $ 1 ) - CONE 30 CONTINUE * RESULT = MIN( CLANGE( '1', N, N, WORK, N, RWORK ), $ REAL( N ) ) / ( N*ULP ) END IF * RETURN * * End of CGET51 * END |