1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
SUBROUTINE CGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
$ WORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. LOGICAL LEFT INTEGER LDA, LDB, LDE, N * .. * .. Array Arguments .. REAL RESULT( 2 ), RWORK( * ) COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), $ BETA( * ), E( LDE, * ), WORK( * ) * .. * * Purpose * ======= * * CGET52 does an eigenvector check for the generalized eigenvalue * problem. * * The basic test for right eigenvectors is: * * | b(i) A E(i) - a(i) B E(i) | * RESULT(1) = max ------------------------------- * i n ulp max( |b(i) A|, |a(i) B| ) * * using the 1-norm. Here, a(i)/b(i) = w is the i-th generalized * eigenvalue of A - w B, or, equivalently, b(i)/a(i) = m is the i-th * generalized eigenvalue of m A - B. * * H H _ _ * For left eigenvectors, A , B , a, and b are used. * * CGET52 also tests the normalization of E. Each eigenvector is * supposed to be normalized so that the maximum "absolute value" * of its elements is 1, where in this case, "absolute value" * of a complex value x is |Re(x)| + |Im(x)| ; let us call this * maximum "absolute value" norm of a vector v M(v). * if a(i)=b(i)=0, then the eigenvector is set to be the jth coordinate * vector. The normalization test is: * * RESULT(2) = max | M(v(i)) - 1 | / ( n ulp ) * eigenvectors v(i) * * Arguments * ========= * * LEFT (input) LOGICAL * =.TRUE.: The eigenvectors in the columns of E are assumed * to be *left* eigenvectors. * =.FALSE.: The eigenvectors in the columns of E are assumed * to be *right* eigenvectors. * * N (input) INTEGER * The size of the matrices. If it is zero, CGET52 does * nothing. It must be at least zero. * * A (input) COMPLEX array, dimension (LDA, N) * The matrix A. * * LDA (input) INTEGER * The leading dimension of A. It must be at least 1 * and at least N. * * B (input) COMPLEX array, dimension (LDB, N) * The matrix B. * * LDB (input) INTEGER * The leading dimension of B. It must be at least 1 * and at least N. * * E (input) COMPLEX array, dimension (LDE, N) * The matrix of eigenvectors. It must be O( 1 ). * * LDE (input) INTEGER * The leading dimension of E. It must be at least 1 and at * least N. * * ALPHA (input) COMPLEX array, dimension (N) * The values a(i) as described above, which, along with b(i), * define the generalized eigenvalues. * * BETA (input) COMPLEX array, dimension (N) * The values b(i) as described above, which, along with a(i), * define the generalized eigenvalues. * * WORK (workspace) COMPLEX array, dimension (N**2) * * RWORK (workspace) REAL array, dimension (N) * * RESULT (output) REAL array, dimension (2) * The values computed by the test described above. If A E or * B E is likely to overflow, then RESULT(1:2) is set to * 10 / ulp. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. CHARACTER NORMAB, TRANS INTEGER J, JVEC REAL ABMAX, ALFMAX, ANORM, BETMAX, BNORM, ENORM, $ ENRMER, ERRNRM, SAFMAX, SAFMIN, SCALE, TEMP1, $ ULP COMPLEX ACOEFF, ALPHAI, BCOEFF, BETAI, X * .. * .. External Functions .. REAL CLANGE, SLAMCH EXTERNAL CLANGE, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEMV * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, CONJG, MAX, REAL * .. * .. Statement Functions .. REAL ABS1 * .. * .. Statement Function definitions .. ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) ) * .. * .. Executable Statements .. * RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO IF( N.LE.0 ) $ RETURN * SAFMIN = SLAMCH( 'Safe minimum' ) SAFMAX = ONE / SAFMIN ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) * IF( LEFT ) THEN TRANS = 'C' NORMAB = 'I' ELSE TRANS = 'N' NORMAB = 'O' END IF * * Norm of A, B, and E: * ANORM = MAX( CLANGE( NORMAB, N, N, A, LDA, RWORK ), SAFMIN ) BNORM = MAX( CLANGE( NORMAB, N, N, B, LDB, RWORK ), SAFMIN ) ENORM = MAX( CLANGE( 'O', N, N, E, LDE, RWORK ), ULP ) ALFMAX = SAFMAX / MAX( ONE, BNORM ) BETMAX = SAFMAX / MAX( ONE, ANORM ) * * Compute error matrix. * Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B| |b(i) A| ) * DO 10 JVEC = 1, N ALPHAI = ALPHA( JVEC ) BETAI = BETA( JVEC ) ABMAX = MAX( ABS1( ALPHAI ), ABS1( BETAI ) ) IF( ABS1( ALPHAI ).GT.ALFMAX .OR. ABS1( BETAI ).GT.BETMAX .OR. $ ABMAX.LT.ONE ) THEN SCALE = ONE / MAX( ABMAX, SAFMIN ) ALPHAI = SCALE*ALPHAI BETAI = SCALE*BETAI END IF SCALE = ONE / MAX( ABS1( ALPHAI )*BNORM, ABS1( BETAI )*ANORM, $ SAFMIN ) ACOEFF = SCALE*BETAI BCOEFF = SCALE*ALPHAI IF( LEFT ) THEN ACOEFF = CONJG( ACOEFF ) BCOEFF = CONJG( BCOEFF ) END IF CALL CGEMV( TRANS, N, N, ACOEFF, A, LDA, E( 1, JVEC ), 1, $ CZERO, WORK( N*( JVEC-1 )+1 ), 1 ) CALL CGEMV( TRANS, N, N, -BCOEFF, B, LDA, E( 1, JVEC ), 1, $ CONE, WORK( N*( JVEC-1 )+1 ), 1 ) 10 CONTINUE * ERRNRM = CLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM * * Compute RESULT(1) * RESULT( 1 ) = ERRNRM / ULP * * Normalization of E: * ENRMER = ZERO DO 30 JVEC = 1, N TEMP1 = ZERO DO 20 J = 1, N TEMP1 = MAX( TEMP1, ABS1( E( J, JVEC ) ) ) 20 CONTINUE ENRMER = MAX( ENRMER, TEMP1-ONE ) 30 CONTINUE * * Compute RESULT(2) : the normalization error in E. * RESULT( 2 ) = ENRMER / ( REAL( N )*ULP ) * RETURN * * End of CGET52 * END |