1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
SUBROUTINE CGET54( N, A, LDA, B, LDB, S, LDS, T, LDT, U, LDU, V,
$ LDV, WORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LDB, LDS, LDT, LDU, LDV, N REAL RESULT * .. * .. Array Arguments .. COMPLEX A( LDA, * ), B( LDB, * ), S( LDS, * ), $ T( LDT, * ), U( LDU, * ), V( LDV, * ), $ WORK( * ) * .. * * Purpose * ======= * * CGET54 checks a generalized decomposition of the form * * A = U*S*V' and B = U*T* V' * * where ' means conjugate transpose and U and V are unitary. * * Specifically, * * RESULT = ||( A - U*S*V', B - U*T*V' )|| / (||( A, B )||*n*ulp ) * * Arguments * ========= * * N (input) INTEGER * The size of the matrix. If it is zero, SGET54 does nothing. * It must be at least zero. * * A (input) COMPLEX array, dimension (LDA, N) * The original (unfactored) matrix A. * * LDA (input) INTEGER * The leading dimension of A. It must be at least 1 * and at least N. * * B (input) COMPLEX array, dimension (LDB, N) * The original (unfactored) matrix B. * * LDB (input) INTEGER * The leading dimension of B. It must be at least 1 * and at least N. * * S (input) COMPLEX array, dimension (LDS, N) * The factored matrix S. * * LDS (input) INTEGER * The leading dimension of S. It must be at least 1 * and at least N. * * T (input) COMPLEX array, dimension (LDT, N) * The factored matrix T. * * LDT (input) INTEGER * The leading dimension of T. It must be at least 1 * and at least N. * * U (input) COMPLEX array, dimension (LDU, N) * The orthogonal matrix on the left-hand side in the * decomposition. * * LDU (input) INTEGER * The leading dimension of U. LDU must be at least N and * at least 1. * * V (input) COMPLEX array, dimension (LDV, N) * The orthogonal matrix on the left-hand side in the * decomposition. * * LDV (input) INTEGER * The leading dimension of V. LDV must be at least N and * at least 1. * * WORK (workspace) COMPLEX array, dimension (3*N**2) * * RESULT (output) REAL * The value RESULT, It is currently limited to 1/ulp, to * avoid overflow. Errors are flagged by RESULT=10/ulp. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. REAL ABNORM, ULP, UNFL, WNORM * .. * .. Local Arrays .. REAL DUM( 1 ) * .. * .. External Functions .. REAL CLANGE, SLAMCH EXTERNAL CLANGE, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEMM, CLACPY * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Executable Statements .. * RESULT = ZERO IF( N.LE.0 ) $ RETURN * * Constants * UNFL = SLAMCH( 'Safe minimum' ) ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) * * compute the norm of (A,B) * CALL CLACPY( 'Full', N, N, A, LDA, WORK, N ) CALL CLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N ) ABNORM = MAX( CLANGE( '1', N, 2*N, WORK, N, DUM ), UNFL ) * * Compute W1 = A - U*S*V', and put in the array WORK(1:N*N) * CALL CLACPY( ' ', N, N, A, LDA, WORK, N ) CALL CGEMM( 'N', 'N', N, N, N, CONE, U, LDU, S, LDS, CZERO, $ WORK( N*N+1 ), N ) * CALL CGEMM( 'N', 'C', N, N, N, -CONE, WORK( N*N+1 ), N, V, LDV, $ CONE, WORK, N ) * * Compute W2 = B - U*T*V', and put in the workarray W(N*N+1:2*N*N) * CALL CLACPY( ' ', N, N, B, LDB, WORK( N*N+1 ), N ) CALL CGEMM( 'N', 'N', N, N, N, CONE, U, LDU, T, LDT, CZERO, $ WORK( 2*N*N+1 ), N ) * CALL CGEMM( 'N', 'C', N, N, N, -CONE, WORK( 2*N*N+1 ), N, V, LDV, $ CONE, WORK( N*N+1 ), N ) * * Compute norm(W)/ ( ulp*norm((A,B)) ) * WNORM = CLANGE( '1', N, 2*N, WORK, N, DUM ) * IF( ABNORM.GT.WNORM ) THEN RESULT = ( WNORM / ABNORM ) / ( 2*N*ULP ) ELSE IF( ABNORM.LT.ONE ) THEN RESULT = ( MIN( WNORM, 2*N*ABNORM ) / ABNORM ) / ( 2*N*ULP ) ELSE RESULT = MIN( WNORM / ABNORM, REAL( 2*N ) ) / ( 2*N*ULP ) END IF END IF * RETURN * * End of CGET54 * END |