1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
SUBROUTINE CGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF,
$ X, U, WORK, LWORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LDB, LWORK, M, P, N REAL RESULT * .. * .. Array Arguments .. REAL RWORK( * ) COMPLEX A( LDA, * ), AF( LDA, * ), B( LDB, * ), $ BF( LDB, * ), D( * ), DF( * ), U( * ), $ WORK( LWORK ), X( * ) * * Purpose * ======= * * CGLMTS tests CGGGLM - a subroutine for solving the generalized * linear model problem. * * Arguments * ========= * * N (input) INTEGER * The number of rows of the matrices A and B. N >= 0. * * M (input) INTEGER * The number of columns of the matrix A. M >= 0. * * P (input) INTEGER * The number of columns of the matrix B. P >= 0. * * A (input) COMPLEX array, dimension (LDA,M) * The N-by-M matrix A. * * AF (workspace) COMPLEX array, dimension (LDA,M) * * LDA (input) INTEGER * The leading dimension of the arrays A, AF. LDA >= max(M,N). * * B (input) COMPLEX array, dimension (LDB,P) * The N-by-P matrix A. * * BF (workspace) COMPLEX array, dimension (LDB,P) * * LDB (input) INTEGER * The leading dimension of the arrays B, BF. LDB >= max(P,N). * * D (input) COMPLEX array, dimension( N ) * On input, the left hand side of the GLM. * * DF (workspace) COMPLEX array, dimension( N ) * * X (output) COMPLEX array, dimension( M ) * solution vector X in the GLM problem. * * U (output) COMPLEX array, dimension( P ) * solution vector U in the GLM problem. * * WORK (workspace) COMPLEX array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK. * * RWORK (workspace) REAL array, dimension (M) * * RESULT (output) REAL * The test ratio: * norm( d - A*x - B*u ) * RESULT = ----------------------------------------- * (norm(A)+norm(B))*(norm(x)+norm(u))*EPS * * ==================================================================== * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) COMPLEX CONE PARAMETER ( CONE = 1.0E+0 ) * .. * .. Local Scalars .. INTEGER INFO REAL ANORM, BNORM, EPS, XNORM, YNORM, DNORM, UNFL * .. * .. External Functions .. REAL SCASUM, SLAMCH, CLANGE EXTERNAL SCASUM, SLAMCH, CLANGE * .. * .. External Subroutines .. EXTERNAL CLACPY * * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * EPS = SLAMCH( 'Epsilon' ) UNFL = SLAMCH( 'Safe minimum' ) ANORM = MAX( CLANGE( '1', N, M, A, LDA, RWORK ), UNFL ) BNORM = MAX( CLANGE( '1', N, P, B, LDB, RWORK ), UNFL ) * * Copy the matrices A and B to the arrays AF and BF, * and the vector D the array DF. * CALL CLACPY( 'Full', N, M, A, LDA, AF, LDA ) CALL CLACPY( 'Full', N, P, B, LDB, BF, LDB ) CALL CCOPY( N, D, 1, DF, 1 ) * * Solve GLM problem * CALL CGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK, $ INFO ) * * Test the residual for the solution of LSE * * norm( d - A*x - B*u ) * RESULT = ----------------------------------------- * (norm(A)+norm(B))*(norm(x)+norm(u))*EPS * CALL CCOPY( N, D, 1, DF, 1 ) CALL CGEMV( 'No transpose', N, M, -CONE, A, LDA, X, 1, CONE, $ DF, 1 ) * CALL CGEMV( 'No transpose', N, P, -CONE, B, LDB, U, 1, CONE, $ DF, 1 ) * DNORM = SCASUM( N, DF, 1 ) XNORM = SCASUM( M, X, 1 ) + SCASUM( P, U, 1 ) YNORM = ANORM + BNORM * IF( XNORM.LE.ZERO ) THEN RESULT = ZERO ELSE RESULT = ( ( DNORM / YNORM ) / XNORM ) /EPS END IF * RETURN * * End of CGLMTS * END |