1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
SUBROUTINE CGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
$ BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LDB, LWORK, M, P, N * .. * .. Array Arguments .. REAL RESULT( 4 ), RWORK( * ) COMPLEX A( LDA, * ), AF( LDA, * ), R( LDA, * ), $ Q( LDA, * ), B( LDB, * ), BF( LDB, * ), $ T( LDB, * ), Z( LDB, * ), BWK( LDB, * ), $ TAUA( * ), TAUB( * ), WORK( LWORK ) * .. * * Purpose * ======= * * CGRQTS tests CGGRQF, which computes the GRQ factorization of an * M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * P (input) INTEGER * The number of rows of the matrix B. P >= 0. * * N (input) INTEGER * The number of columns of the matrices A and B. N >= 0. * * A (input) COMPLEX array, dimension (LDA,N) * The M-by-N matrix A. * * AF (output) COMPLEX array, dimension (LDA,N) * Details of the GRQ factorization of A and B, as returned * by CGGRQF, see CGGRQF for further details. * * Q (output) COMPLEX array, dimension (LDA,N) * The N-by-N unitary matrix Q. * * R (workspace) COMPLEX array, dimension (LDA,MAX(M,N)) * * LDA (input) INTEGER * The leading dimension of the arrays A, AF, R and Q. * LDA >= max(M,N). * * TAUA (output) COMPLEX array, dimension (min(M,N)) * The scalar factors of the elementary reflectors, as returned * by SGGQRC. * * B (input) COMPLEX array, dimension (LDB,N) * On entry, the P-by-N matrix A. * * BF (output) COMPLEX array, dimension (LDB,N) * Details of the GQR factorization of A and B, as returned * by CGGRQF, see CGGRQF for further details. * * Z (output) REAL array, dimension (LDB,P) * The P-by-P unitary matrix Z. * * T (workspace) COMPLEX array, dimension (LDB,max(P,N)) * * BWK (workspace) COMPLEX array, dimension (LDB,N) * * LDB (input) INTEGER * The leading dimension of the arrays B, BF, Z and T. * LDB >= max(P,N). * * TAUB (output) COMPLEX array, dimension (min(P,N)) * The scalar factors of the elementary reflectors, as returned * by SGGRQF. * * WORK (workspace) COMPLEX array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK, LWORK >= max(M,P,N)**2. * * RWORK (workspace) REAL array, dimension (M) * * RESULT (output) REAL array, dimension (4) * The test ratios: * RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP) * RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP) * RESULT(3) = norm( I - Q'*Q ) / ( N*ULP ) * RESULT(4) = norm( I - Z'*Z ) / ( P*ULP ) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) COMPLEX CROGUE PARAMETER ( CROGUE = ( -1.0E+10, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER INFO REAL ANORM, BNORM, ULP, UNFL, RESID * .. * .. External Functions .. REAL SLAMCH, CLANGE, CLANHE EXTERNAL SLAMCH, CLANGE, CLANHE * .. * .. External Subroutines .. EXTERNAL CGEMM, CGGRQF, CLACPY, CLASET, CUNGQR, $ CUNGRQ, CHERK * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, REAL * .. * .. Executable Statements .. * ULP = SLAMCH( 'Precision' ) UNFL = SLAMCH( 'Safe minimum' ) * * Copy the matrix A to the array AF. * CALL CLACPY( 'Full', M, N, A, LDA, AF, LDA ) CALL CLACPY( 'Full', P, N, B, LDB, BF, LDB ) * ANORM = MAX( CLANGE( '1', M, N, A, LDA, RWORK ), UNFL ) BNORM = MAX( CLANGE( '1', P, N, B, LDB, RWORK ), UNFL ) * * Factorize the matrices A and B in the arrays AF and BF. * CALL CGGRQF( M, P, N, AF, LDA, TAUA, BF, LDB, TAUB, WORK, $ LWORK, INFO ) * * Generate the N-by-N matrix Q * CALL CLASET( 'Full', N, N, CROGUE, CROGUE, Q, LDA ) IF( M.LE.N ) THEN IF( M.GT.0 .AND. M.LT.N ) $ CALL CLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA ) IF( M.GT.1 ) $ CALL CLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA, $ Q( N-M+2, N-M+1 ), LDA ) ELSE IF( N.GT.1 ) $ CALL CLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA, $ Q( 2, 1 ), LDA ) END IF CALL CUNGRQ( N, N, MIN( M, N ), Q, LDA, TAUA, WORK, LWORK, INFO ) * * Generate the P-by-P matrix Z * CALL CLASET( 'Full', P, P, CROGUE, CROGUE, Z, LDB ) IF( P.GT.1 ) $ CALL CLACPY( 'Lower', P-1, N, BF( 2,1 ), LDB, Z( 2,1 ), LDB ) CALL CUNGQR( P, P, MIN( P,N ), Z, LDB, TAUB, WORK, LWORK, INFO ) * * Copy R * CALL CLASET( 'Full', M, N, CZERO, CZERO, R, LDA ) IF( M.LE.N )THEN CALL CLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA, R( 1, N-M+1 ), $ LDA ) ELSE CALL CLACPY( 'Full', M-N, N, AF, LDA, R, LDA ) CALL CLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA, R( M-N+1, 1 ), $ LDA ) END IF * * Copy T * CALL CLASET( 'Full', P, N, CZERO, CZERO, T, LDB ) CALL CLACPY( 'Upper', P, N, BF, LDB, T, LDB ) * * Compute R - A*Q' * CALL CGEMM( 'No transpose', 'Conjugate transpose', M, N, N, -CONE, $ A, LDA, Q, LDA, CONE, R, LDA ) * * Compute norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP ) . * RESID = CLANGE( '1', M, N, R, LDA, RWORK ) IF( ANORM.GT.ZERO ) THEN RESULT( 1 ) = ( ( RESID / REAL(MAX(1,M,N) ) ) / ANORM ) / ULP ELSE RESULT( 1 ) = ZERO END IF * * Compute T*Q - Z'*B * CALL CGEMM( 'Conjugate transpose', 'No transpose', P, N, P, CONE, $ Z, LDB, B, LDB, CZERO, BWK, LDB ) CALL CGEMM( 'No transpose', 'No transpose', P, N, N, CONE, T, LDB, $ Q, LDA, -CONE, BWK, LDB ) * * Compute norm( T*Q - Z'*B ) / ( MAX(P,N)*norm(A)*ULP ) . * RESID = CLANGE( '1', P, N, BWK, LDB, RWORK ) IF( BNORM.GT.ZERO ) THEN RESULT( 2 ) = ( ( RESID / REAL( MAX( 1,P,M ) ) )/BNORM ) / ULP ELSE RESULT( 2 ) = ZERO END IF * * Compute I - Q*Q' * CALL CLASET( 'Full', N, N, CZERO, CONE, R, LDA ) CALL CHERK( 'Upper', 'No Transpose', N, N, -ONE, Q, LDA, ONE, R, $ LDA ) * * Compute norm( I - Q'*Q ) / ( N * ULP ) . * RESID = CLANHE( '1', 'Upper', N, R, LDA, RWORK ) RESULT( 3 ) = ( RESID / REAL( MAX( 1,N ) ) ) / ULP * * Compute I - Z'*Z * CALL CLASET( 'Full', P, P, CZERO, CONE, T, LDB ) CALL CHERK( 'Upper', 'Conjugate transpose', P, P, -ONE, Z, LDB, $ ONE, T, LDB ) * * Compute norm( I - Z'*Z ) / ( P*ULP ) . * RESID = CLANHE( '1', 'Upper', P, T, LDB, RWORK ) RESULT( 4 ) = ( RESID / REAL( MAX( 1,P ) ) ) / ULP * RETURN * * End of CGRQTS * END |