1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
SUBROUTINE CHST01( N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK,
$ LWORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER IHI, ILO, LDA, LDH, LDQ, LWORK, N * .. * .. Array Arguments .. REAL RESULT( 2 ), RWORK( * ) COMPLEX A( LDA, * ), H( LDH, * ), Q( LDQ, * ), $ WORK( LWORK ) * .. * * Purpose * ======= * * CHST01 tests the reduction of a general matrix A to upper Hessenberg * form: A = Q*H*Q'. Two test ratios are computed; * * RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) * RESULT(2) = norm( I - Q'*Q ) / ( N * EPS ) * * The matrix Q is assumed to be given explicitly as it would be * following CGEHRD + CUNGHR. * * In this version, ILO and IHI are not used, but they could be used * to save some work if this is desired. * * Arguments * ========= * * N (input) INTEGER * The order of the matrix A. N >= 0. * * ILO (input) INTEGER * IHI (input) INTEGER * A is assumed to be upper triangular in rows and columns * 1:ILO-1 and IHI+1:N, so Q differs from the identity only in * rows and columns ILO+1:IHI. * * A (input) COMPLEX array, dimension (LDA,N) * The original n by n matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * H (input) COMPLEX array, dimension (LDH,N) * The upper Hessenberg matrix H from the reduction A = Q*H*Q' * as computed by CGEHRD. H is assumed to be zero below the * first subdiagonal. * * LDH (input) INTEGER * The leading dimension of the array H. LDH >= max(1,N). * * Q (input) COMPLEX array, dimension (LDQ,N) * The orthogonal matrix Q from the reduction A = Q*H*Q' as * computed by CGEHRD + CUNGHR. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= max(1,N). * * WORK (workspace) COMPLEX array, dimension (LWORK) * * LWORK (input) INTEGER * The length of the array WORK. LWORK >= 2*N*N. * * RWORK (workspace) REAL array, dimension (N) * * RESULT (output) REAL array, dimension (2) * RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) * RESULT(2) = norm( I - Q'*Q ) / ( N * EPS ) * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. INTEGER LDWORK REAL ANORM, EPS, OVFL, SMLNUM, UNFL, WNORM * .. * .. External Functions .. REAL CLANGE, SLAMCH EXTERNAL CLANGE, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEMM, CLACPY, CUNT01, SLABAD * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, MAX, MIN * .. * .. Executable Statements .. * * Quick return if possible * IF( N.LE.0 ) THEN RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO RETURN END IF * UNFL = SLAMCH( 'Safe minimum' ) EPS = SLAMCH( 'Precision' ) OVFL = ONE / UNFL CALL SLABAD( UNFL, OVFL ) SMLNUM = UNFL*N / EPS * * Test 1: Compute norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) * * Copy A to WORK * LDWORK = MAX( 1, N ) CALL CLACPY( ' ', N, N, A, LDA, WORK, LDWORK ) * * Compute Q*H * CALL CGEMM( 'No transpose', 'No transpose', N, N, N, CMPLX( ONE ), $ Q, LDQ, H, LDH, CMPLX( ZERO ), WORK( LDWORK*N+1 ), $ LDWORK ) * * Compute A - Q*H*Q' * CALL CGEMM( 'No transpose', 'Conjugate transpose', N, N, N, $ CMPLX( -ONE ), WORK( LDWORK*N+1 ), LDWORK, Q, LDQ, $ CMPLX( ONE ), WORK, LDWORK ) * ANORM = MAX( CLANGE( '1', N, N, A, LDA, RWORK ), UNFL ) WNORM = CLANGE( '1', N, N, WORK, LDWORK, RWORK ) * * Note that RESULT(1) cannot overflow and is bounded by 1/(N*EPS) * RESULT( 1 ) = MIN( WNORM, ANORM ) / MAX( SMLNUM, ANORM*EPS ) / N * * Test 2: Compute norm( I - Q'*Q ) / ( N * EPS ) * CALL CUNT01( 'Columns', N, N, Q, LDQ, WORK, LWORK, RWORK, $ RESULT( 2 ) ) * RETURN * * End of CHST01 * END |