1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
SUBROUTINE CSTT21( N, KBAND, AD, AE, SD, SE, U, LDU, WORK, RWORK,
$ RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER KBAND, LDU, N * .. * .. Array Arguments .. REAL AD( * ), AE( * ), RESULT( 2 ), RWORK( * ), $ SD( * ), SE( * ) COMPLEX U( LDU, * ), WORK( * ) * .. * * Purpose * ======= * * CSTT21 checks a decomposition of the form * * A = U S U* * * where * means conjugate transpose, A is real symmetric tridiagonal, * U is unitary, and S is real and diagonal (if KBAND=0) or symmetric * tridiagonal (if KBAND=1). Two tests are performed: * * RESULT(1) = | A - U S U* | / ( |A| n ulp ) * * RESULT(2) = | I - UU* | / ( n ulp ) * * Arguments * ========= * * N (input) INTEGER * The size of the matrix. If it is zero, CSTT21 does nothing. * It must be at least zero. * * KBAND (input) INTEGER * The bandwidth of the matrix S. It may only be zero or one. * If zero, then S is diagonal, and SE is not referenced. If * one, then S is symmetric tri-diagonal. * * AD (input) REAL array, dimension (N) * The diagonal of the original (unfactored) matrix A. A is * assumed to be real symmetric tridiagonal. * * AE (input) REAL array, dimension (N-1) * The off-diagonal of the original (unfactored) matrix A. A * is assumed to be symmetric tridiagonal. AE(1) is the (1,2) * and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc. * * SD (input) REAL array, dimension (N) * The diagonal of the real (symmetric tri-) diagonal matrix S. * * SE (input) REAL array, dimension (N-1) * The off-diagonal of the (symmetric tri-) diagonal matrix S. * Not referenced if KBSND=0. If KBAND=1, then AE(1) is the * (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2) * element, etc. * * U (input) COMPLEX array, dimension (LDU, N) * The unitary matrix in the decomposition. * * LDU (input) INTEGER * The leading dimension of U. LDU must be at least N. * * WORK (workspace) COMPLEX array, dimension (N**2) * * RWORK (workspace) REAL array, dimension (N) * * RESULT (output) REAL array, dimension (2) * The values computed by the two tests described above. The * values are currently limited to 1/ulp, to avoid overflow. * RESULT(1) is always modified. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER J REAL ANORM, TEMP1, TEMP2, ULP, UNFL, WNORM * .. * .. External Functions .. REAL CLANGE, CLANHE, SLAMCH EXTERNAL CLANGE, CLANHE, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEMM, CHER, CHER2, CLASET * .. * .. Intrinsic Functions .. INTRINSIC ABS, CMPLX, MAX, MIN, REAL * .. * .. Executable Statements .. * * 1) Constants * RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO IF( N.LE.0 ) $ RETURN * UNFL = SLAMCH( 'Safe minimum' ) ULP = SLAMCH( 'Precision' ) * * Do Test 1 * * Copy A & Compute its 1-Norm: * CALL CLASET( 'Full', N, N, CZERO, CZERO, WORK, N ) * ANORM = ZERO TEMP1 = ZERO * DO 10 J = 1, N - 1 WORK( ( N+1 )*( J-1 )+1 ) = AD( J ) WORK( ( N+1 )*( J-1 )+2 ) = AE( J ) TEMP2 = ABS( AE( J ) ) ANORM = MAX( ANORM, ABS( AD( J ) )+TEMP1+TEMP2 ) TEMP1 = TEMP2 10 CONTINUE * WORK( N**2 ) = AD( N ) ANORM = MAX( ANORM, ABS( AD( N ) )+TEMP1, UNFL ) * * Norm of A - USU* * DO 20 J = 1, N CALL CHER( 'L', N, -SD( J ), U( 1, J ), 1, WORK, N ) 20 CONTINUE * IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN DO 30 J = 1, N - 1 CALL CHER2( 'L', N, -CMPLX( SE( J ) ), U( 1, J ), 1, $ U( 1, J+1 ), 1, WORK, N ) 30 CONTINUE END IF * WNORM = CLANHE( '1', 'L', N, WORK, N, RWORK ) * IF( ANORM.GT.WNORM ) THEN RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP ) ELSE IF( ANORM.LT.ONE ) THEN RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) ELSE RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP ) END IF END IF * * Do Test 2 * * Compute UU* - I * CALL CGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, WORK, $ N ) * DO 40 J = 1, N WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE 40 CONTINUE * RESULT( 2 ) = MIN( REAL( N ), CLANGE( '1', N, N, WORK, N, $ RWORK ) ) / ( N*ULP ) * RETURN * * End of CSTT21 * END |