1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
SUBROUTINE CSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
$ LDWORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER KBAND, LDU, LDWORK, M, N * .. * .. Array Arguments .. REAL AD( * ), AE( * ), RESULT( 2 ), RWORK( * ), $ SD( * ), SE( * ) COMPLEX U( LDU, * ), WORK( LDWORK, * ) * .. * * Purpose * ======= * * CSTT22 checks a set of M eigenvalues and eigenvectors, * * A U = U S * * where A is Hermitian tridiagonal, the columns of U are unitary, * and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1). * Two tests are performed: * * RESULT(1) = | U* A U - S | / ( |A| m ulp ) * * RESULT(2) = | I - U*U | / ( m ulp ) * * Arguments * ========= * * N (input) INTEGER * The size of the matrix. If it is zero, CSTT22 does nothing. * It must be at least zero. * * M (input) INTEGER * The number of eigenpairs to check. If it is zero, CSTT22 * does nothing. It must be at least zero. * * KBAND (input) INTEGER * The bandwidth of the matrix S. It may only be zero or one. * If zero, then S is diagonal, and SE is not referenced. If * one, then S is Hermitian tri-diagonal. * * AD (input) REAL array, dimension (N) * The diagonal of the original (unfactored) matrix A. A is * assumed to be Hermitian tridiagonal. * * AE (input) REAL array, dimension (N) * The off-diagonal of the original (unfactored) matrix A. A * is assumed to be Hermitian tridiagonal. AE(1) is ignored, * AE(2) is the (1,2) and (2,1) element, etc. * * SD (input) REAL array, dimension (N) * The diagonal of the (Hermitian tri-) diagonal matrix S. * * SE (input) REAL array, dimension (N) * The off-diagonal of the (Hermitian tri-) diagonal matrix S. * Not referenced if KBSND=0. If KBAND=1, then AE(1) is * ignored, SE(2) is the (1,2) and (2,1) element, etc. * * U (input) REAL array, dimension (LDU, N) * The unitary matrix in the decomposition. * * LDU (input) INTEGER * The leading dimension of U. LDU must be at least N. * * WORK (workspace) COMPLEX array, dimension (LDWORK, M+1) * * LDWORK (input) INTEGER * The leading dimension of WORK. LDWORK must be at least * max(1,M). * * RWORK (workspace) REAL array, dimension (N) * * RESULT (output) REAL array, dimension (2) * The values computed by the two tests described above. The * values are currently limited to 1/ulp, to avoid overflow. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I, J, K REAL ANORM, ULP, UNFL, WNORM COMPLEX AUKJ * .. * .. External Functions .. REAL CLANGE, CLANSY, SLAMCH EXTERNAL CLANGE, CLANSY, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGEMM * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, REAL * .. * .. Executable Statements .. * RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO IF( N.LE.0 .OR. M.LE.0 ) $ RETURN * UNFL = SLAMCH( 'Safe minimum' ) ULP = SLAMCH( 'Epsilon' ) * * Do Test 1 * * Compute the 1-norm of A. * IF( N.GT.1 ) THEN ANORM = ABS( AD( 1 ) ) + ABS( AE( 1 ) ) DO 10 J = 2, N - 1 ANORM = MAX( ANORM, ABS( AD( J ) )+ABS( AE( J ) )+ $ ABS( AE( J-1 ) ) ) 10 CONTINUE ANORM = MAX( ANORM, ABS( AD( N ) )+ABS( AE( N-1 ) ) ) ELSE ANORM = ABS( AD( 1 ) ) END IF ANORM = MAX( ANORM, UNFL ) * * Norm of U*AU - S * DO 40 I = 1, M DO 30 J = 1, M WORK( I, J ) = CZERO DO 20 K = 1, N AUKJ = AD( K )*U( K, J ) IF( K.NE.N ) $ AUKJ = AUKJ + AE( K )*U( K+1, J ) IF( K.NE.1 ) $ AUKJ = AUKJ + AE( K-1 )*U( K-1, J ) WORK( I, J ) = WORK( I, J ) + U( K, I )*AUKJ 20 CONTINUE 30 CONTINUE WORK( I, I ) = WORK( I, I ) - SD( I ) IF( KBAND.EQ.1 ) THEN IF( I.NE.1 ) $ WORK( I, I-1 ) = WORK( I, I-1 ) - SE( I-1 ) IF( I.NE.N ) $ WORK( I, I+1 ) = WORK( I, I+1 ) - SE( I ) END IF 40 CONTINUE * WNORM = CLANSY( '1', 'L', M, WORK, M, RWORK ) * IF( ANORM.GT.WNORM ) THEN RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP ) ELSE IF( ANORM.LT.ONE ) THEN RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP ) ELSE RESULT( 1 ) = MIN( WNORM / ANORM, REAL( M ) ) / ( M*ULP ) END IF END IF * * Do Test 2 * * Compute U*U - I * CALL CGEMM( 'T', 'N', M, M, N, CONE, U, LDU, U, LDU, CZERO, WORK, $ M ) * DO 50 J = 1, M WORK( J, J ) = WORK( J, J ) - ONE 50 CONTINUE * RESULT( 2 ) = MIN( REAL( M ), CLANGE( '1', M, M, WORK, M, $ RWORK ) ) / ( M*ULP ) * RETURN * * End of CSTT22 * END |