DBDT01
   Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
November 2006
Purpose
DBDT01 reconstructs a general matrix A from its bidiagonal form
A = Q * B * P'
where Q (m by min(m,n)) and P' (min(m,n) by n) are orthogonal
matrices and B is bidiagonal.
The test ratio to test the reduction is
RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
where PT = P' and EPS is the machine precision.
A = Q * B * P'
where Q (m by min(m,n)) and P' (min(m,n) by n) are orthogonal
matrices and B is bidiagonal.
The test ratio to test the reduction is
RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
where PT = P' and EPS is the machine precision.
Arguments
| M | 
(input) INTEGER
 
The number of rows of the matrices A and Q. | 
| N | 
(input) INTEGER
 
The number of columns of the matrices A and P'. | 
| KD | 
(input) INTEGER
 
If KD = 0, B is diagonal and the array E is not referenced. If KD = 1, the reduction was performed by xGEBRD; B is upper bidiagonal if M >= N, and lower bidiagonal if M < N. If KD = -1, the reduction was performed by xGBBRD; B is always upper bidiagonal. | 
| A | 
(input) DOUBLE PRECISION array, dimension (LDA,N)
 
The m by n matrix A. | 
| LDA | 
(input) INTEGER
 
The leading dimension of the array A.  LDA >= max(1,M). | 
| Q | 
(input) DOUBLE PRECISION array, dimension (LDQ,N)
 
The m by min(m,n) orthogonal matrix Q in the reduction A = Q * B * P'. | 
| LDQ | 
(input) INTEGER
 
The leading dimension of the array Q.  LDQ >= max(1,M). | 
| D | 
(input) DOUBLE PRECISION array, dimension (min(M,N))
 
The diagonal elements of the bidiagonal matrix B. | 
| E | 
(input) DOUBLE PRECISION array, dimension (min(M,N)-1)
 
The superdiagonal elements of the bidiagonal matrix B if m >= n, or the subdiagonal elements of B if m < n. | 
| PT | 
(input) DOUBLE PRECISION array, dimension (LDPT,N)
 
The min(m,n) by n orthogonal matrix P' in the reduction A = Q * B * P'. | 
| LDPT | 
(input) INTEGER
 
The leading dimension of the array PT. LDPT >= max(1,min(M,N)). | 
| WORK | 
(workspace) DOUBLE PRECISION array, dimension (M+N)
 | 
| RESID | 
(output) DOUBLE PRECISION
 
The test ratio:  norm(A - Q * B * P') / ( n * norm(A) * EPS ) |