1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
SUBROUTINE DBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
$ RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER KD, LDU, LDVT, N DOUBLE PRECISION RESID * .. * .. Array Arguments .. DOUBLE PRECISION D( * ), E( * ), S( * ), U( LDU, * ), $ VT( LDVT, * ), WORK( * ) * .. * * Purpose * ======= * * DBDT03 reconstructs a bidiagonal matrix B from its SVD: * S = U' * B * V * where U and V are orthogonal matrices and S is diagonal. * * The test ratio to test the singular value decomposition is * RESID = norm( B - U * S * VT ) / ( n * norm(B) * EPS ) * where VT = V' and EPS is the machine precision. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the matrix B is upper or lower bidiagonal. * = 'U': Upper bidiagonal * = 'L': Lower bidiagonal * * N (input) INTEGER * The order of the matrix B. * * KD (input) INTEGER * The bandwidth of the bidiagonal matrix B. If KD = 1, the * matrix B is bidiagonal, and if KD = 0, B is diagonal and E is * not referenced. If KD is greater than 1, it is assumed to be * 1, and if KD is less than 0, it is assumed to be 0. * * D (input) DOUBLE PRECISION array, dimension (N) * The n diagonal elements of the bidiagonal matrix B. * * E (input) DOUBLE PRECISION array, dimension (N-1) * The (n-1) superdiagonal elements of the bidiagonal matrix B * if UPLO = 'U', or the (n-1) subdiagonal elements of B if * UPLO = 'L'. * * U (input) DOUBLE PRECISION array, dimension (LDU,N) * The n by n orthogonal matrix U in the reduction B = U'*A*P. * * LDU (input) INTEGER * The leading dimension of the array U. LDU >= max(1,N) * * S (input) DOUBLE PRECISION array, dimension (N) * The singular values from the SVD of B, sorted in decreasing * order. * * VT (input) DOUBLE PRECISION array, dimension (LDVT,N) * The n by n orthogonal matrix V' in the reduction * B = U * S * V'. * * LDVT (input) INTEGER * The leading dimension of the array VT. * * WORK (workspace) DOUBLE PRECISION array, dimension (2*N) * * RESID (output) DOUBLE PRECISION * The test ratio: norm(B - U * S * V') / ( n * norm(A) * EPS ) * * ====================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER I, J DOUBLE PRECISION BNORM, EPS * .. * .. External Functions .. LOGICAL LSAME INTEGER IDAMAX DOUBLE PRECISION DASUM, DLAMCH EXTERNAL LSAME, IDAMAX, DASUM, DLAMCH * .. * .. External Subroutines .. EXTERNAL DGEMV * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN * .. * .. Executable Statements .. * * Quick return if possible * RESID = ZERO IF( N.LE.0 ) $ RETURN * * Compute B - U * S * V' one column at a time. * BNORM = ZERO IF( KD.GE.1 ) THEN * * B is bidiagonal. * IF( LSAME( UPLO, 'U' ) ) THEN * * B is upper bidiagonal. * DO 20 J = 1, N DO 10 I = 1, N WORK( N+I ) = S( I )*VT( I, J ) 10 CONTINUE CALL DGEMV( 'No transpose', N, N, -ONE, U, LDU, $ WORK( N+1 ), 1, ZERO, WORK, 1 ) WORK( J ) = WORK( J ) + D( J ) IF( J.GT.1 ) THEN WORK( J-1 ) = WORK( J-1 ) + E( J-1 ) BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J-1 ) ) ) ELSE BNORM = MAX( BNORM, ABS( D( J ) ) ) END IF RESID = MAX( RESID, DASUM( N, WORK, 1 ) ) 20 CONTINUE ELSE * * B is lower bidiagonal. * DO 40 J = 1, N DO 30 I = 1, N WORK( N+I ) = S( I )*VT( I, J ) 30 CONTINUE CALL DGEMV( 'No transpose', N, N, -ONE, U, LDU, $ WORK( N+1 ), 1, ZERO, WORK, 1 ) WORK( J ) = WORK( J ) + D( J ) IF( J.LT.N ) THEN WORK( J+1 ) = WORK( J+1 ) + E( J ) BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J ) ) ) ELSE BNORM = MAX( BNORM, ABS( D( J ) ) ) END IF RESID = MAX( RESID, DASUM( N, WORK, 1 ) ) 40 CONTINUE END IF ELSE * * B is diagonal. * DO 60 J = 1, N DO 50 I = 1, N WORK( N+I ) = S( I )*VT( I, J ) 50 CONTINUE CALL DGEMV( 'No transpose', N, N, -ONE, U, LDU, WORK( N+1 ), $ 1, ZERO, WORK, 1 ) WORK( J ) = WORK( J ) + D( J ) RESID = MAX( RESID, DASUM( N, WORK, 1 ) ) 60 CONTINUE J = IDAMAX( N, D, 1 ) BNORM = ABS( D( J ) ) END IF * * Compute norm(B - U * S * V') / ( n * norm(B) * EPS ) * EPS = DLAMCH( 'Precision' ) * IF( BNORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE IF( BNORM.GE.RESID ) THEN RESID = ( RESID / BNORM ) / ( DBLE( N )*EPS ) ELSE IF( BNORM.LT.ONE ) THEN RESID = ( MIN( RESID, DBLE( N )*BNORM ) / BNORM ) / $ ( DBLE( N )*EPS ) ELSE RESID = MIN( RESID / BNORM, DBLE( N ) ) / $ ( DBLE( N )*EPS ) END IF END IF END IF * RETURN * * End of DBDT03 * END |