1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
SUBROUTINE DGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, WR,
$ WI, WORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER TRANSA, TRANSE, TRANSW INTEGER LDA, LDE, N * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), E( LDE, * ), RESULT( 2 ), WI( * ), $ WORK( * ), WR( * ) * .. * * Purpose * ======= * * DGET22 does an eigenvector check. * * The basic test is: * * RESULT(1) = | A E - E W | / ( |A| |E| ulp ) * * using the 1-norm. It also tests the normalization of E: * * RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) * j * * where E(j) is the j-th eigenvector, and m-norm is the max-norm of a * vector. If an eigenvector is complex, as determined from WI(j) * nonzero, then the max-norm of the vector ( er + i*ei ) is the maximum * of * |er(1)| + |ei(1)|, ... , |er(n)| + |ei(n)| * * W is a block diagonal matrix, with a 1 by 1 block for each real * eigenvalue and a 2 by 2 block for each complex conjugate pair. * If eigenvalues j and j+1 are a complex conjugate pair, so that * WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the 2 by 2 * block corresponding to the pair will be: * * ( wr wi ) * ( -wi wr ) * * Such a block multiplying an n by 2 matrix ( ur ui ) on the right * will be the same as multiplying ur + i*ui by wr + i*wi. * * To handle various schemes for storage of left eigenvectors, there are * options to use A-transpose instead of A, E-transpose instead of E, * and/or W-transpose instead of W. * * Arguments * ========== * * TRANSA (input) CHARACTER*1 * Specifies whether or not A is transposed. * = 'N': No transpose * = 'T': Transpose * = 'C': Conjugate transpose (= Transpose) * * TRANSE (input) CHARACTER*1 * Specifies whether or not E is transposed. * = 'N': No transpose, eigenvectors are in columns of E * = 'T': Transpose, eigenvectors are in rows of E * = 'C': Conjugate transpose (= Transpose) * * TRANSW (input) CHARACTER*1 * Specifies whether or not W is transposed. * = 'N': No transpose * = 'T': Transpose, use -WI(j) instead of WI(j) * = 'C': Conjugate transpose, use -WI(j) instead of WI(j) * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input) DOUBLE PRECISION array, dimension (LDA,N) * The matrix whose eigenvectors are in E. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * E (input) DOUBLE PRECISION array, dimension (LDE,N) * The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors * are stored in the columns of E, if TRANSE = 'T' or 'C', the * eigenvectors are stored in the rows of E. * * LDE (input) INTEGER * The leading dimension of the array E. LDE >= max(1,N). * * WR (input) DOUBLE PRECISION array, dimension (N) * WI (input) DOUBLE PRECISION array, dimension (N) * The real and imaginary parts of the eigenvalues of A. * Purely real eigenvalues are indicated by WI(j) = 0. * Complex conjugate pairs are indicated by WR(j)=WR(j+1) and * WI(j) = - WI(j+1) non-zero; the real part is assumed to be * stored in the j-th row/column and the imaginary part in * the (j+1)-th row/column. * * WORK (workspace) DOUBLE PRECISION array, dimension (N*(N+1)) * * RESULT (output) DOUBLE PRECISION array, dimension (2) * RESULT(1) = | A E - E W | / ( |A| |E| ulp ) * RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. CHARACTER NORMA, NORME INTEGER IECOL, IEROW, INCE, IPAIR, ITRNSE, J, JCOL, $ JVEC DOUBLE PRECISION ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1, $ ULP, UNFL * .. * .. Local Arrays .. DOUBLE PRECISION WMAT( 2, 2 ) * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, DLANGE EXTERNAL LSAME, DLAMCH, DLANGE * .. * .. External Subroutines .. EXTERNAL DAXPY, DGEMM, DLASET * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN * .. * .. Executable Statements .. * * Initialize RESULT (in case N=0) * RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO IF( N.LE.0 ) $ RETURN * UNFL = DLAMCH( 'Safe minimum' ) ULP = DLAMCH( 'Precision' ) * ITRNSE = 0 INCE = 1 NORMA = 'O' NORME = 'O' * IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN NORMA = 'I' END IF IF( LSAME( TRANSE, 'T' ) .OR. LSAME( TRANSE, 'C' ) ) THEN NORME = 'I' ITRNSE = 1 INCE = LDE END IF * * Check normalization of E * ENRMIN = ONE / ULP ENRMAX = ZERO IF( ITRNSE.EQ.0 ) THEN * * Eigenvectors are column vectors. * IPAIR = 0 DO 30 JVEC = 1, N TEMP1 = ZERO IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO ) $ IPAIR = 1 IF( IPAIR.EQ.1 ) THEN * * Complex eigenvector * DO 10 J = 1, N TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) )+ $ ABS( E( J, JVEC+1 ) ) ) 10 CONTINUE ENRMIN = MIN( ENRMIN, TEMP1 ) ENRMAX = MAX( ENRMAX, TEMP1 ) IPAIR = 2 ELSE IF( IPAIR.EQ.2 ) THEN IPAIR = 0 ELSE * * Real eigenvector * DO 20 J = 1, N TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) ) ) 20 CONTINUE ENRMIN = MIN( ENRMIN, TEMP1 ) ENRMAX = MAX( ENRMAX, TEMP1 ) IPAIR = 0 END IF 30 CONTINUE * ELSE * * Eigenvectors are row vectors. * DO 40 JVEC = 1, N WORK( JVEC ) = ZERO 40 CONTINUE * DO 60 J = 1, N IPAIR = 0 DO 50 JVEC = 1, N IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO ) $ IPAIR = 1 IF( IPAIR.EQ.1 ) THEN WORK( JVEC ) = MAX( WORK( JVEC ), $ ABS( E( J, JVEC ) )+ABS( E( J, $ JVEC+1 ) ) ) WORK( JVEC+1 ) = WORK( JVEC ) ELSE IF( IPAIR.EQ.2 ) THEN IPAIR = 0 ELSE WORK( JVEC ) = MAX( WORK( JVEC ), $ ABS( E( J, JVEC ) ) ) IPAIR = 0 END IF 50 CONTINUE 60 CONTINUE * DO 70 JVEC = 1, N ENRMIN = MIN( ENRMIN, WORK( JVEC ) ) ENRMAX = MAX( ENRMAX, WORK( JVEC ) ) 70 CONTINUE END IF * * Norm of A: * ANORM = MAX( DLANGE( NORMA, N, N, A, LDA, WORK ), UNFL ) * * Norm of E: * ENORM = MAX( DLANGE( NORME, N, N, E, LDE, WORK ), ULP ) * * Norm of error: * * Error = AE - EW * CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N ) * IPAIR = 0 IEROW = 1 IECOL = 1 * DO 80 JCOL = 1, N IF( ITRNSE.EQ.1 ) THEN IEROW = JCOL ELSE IECOL = JCOL END IF * IF( IPAIR.EQ.0 .AND. WI( JCOL ).NE.ZERO ) $ IPAIR = 1 * IF( IPAIR.EQ.1 ) THEN WMAT( 1, 1 ) = WR( JCOL ) WMAT( 2, 1 ) = -WI( JCOL ) WMAT( 1, 2 ) = WI( JCOL ) WMAT( 2, 2 ) = WR( JCOL ) CALL DGEMM( TRANSE, TRANSW, N, 2, 2, ONE, E( IEROW, IECOL ), $ LDE, WMAT, 2, ZERO, WORK( N*( JCOL-1 )+1 ), N ) IPAIR = 2 ELSE IF( IPAIR.EQ.2 ) THEN IPAIR = 0 * ELSE * CALL DAXPY( N, WR( JCOL ), E( IEROW, IECOL ), INCE, $ WORK( N*( JCOL-1 )+1 ), 1 ) IPAIR = 0 END IF * 80 CONTINUE * CALL DGEMM( TRANSA, TRANSE, N, N, N, ONE, A, LDA, E, LDE, -ONE, $ WORK, N ) * ERRNRM = DLANGE( 'One', N, N, WORK, N, WORK( N*N+1 ) ) / ENORM * * Compute RESULT(1) (avoiding under/overflow) * IF( ANORM.GT.ERRNRM ) THEN RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP ELSE IF( ANORM.LT.ONE ) THEN RESULT( 1 ) = ( MIN( ERRNRM, ANORM ) / ANORM ) / ULP ELSE RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP END IF END IF * * Compute RESULT(2) : the normalization error in E. * RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) / $ ( DBLE( N )*ULP ) * RETURN * * End of DGET22 * END |