1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
SUBROUTINE DGET36( RMAX, LMAX, NINFO, KNT, NIN )
* * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER KNT, LMAX, NIN DOUBLE PRECISION RMAX * .. * .. Array Arguments .. INTEGER NINFO( 3 ) * .. * * Purpose * ======= * * DGET36 tests DTREXC, a routine for moving blocks (either 1 by 1 or * 2 by 2) on the diagonal of a matrix in real Schur form. Thus, DLAEXC * computes an orthogonal matrix Q such that * * Q' * T1 * Q = T2 * * and where one of the diagonal blocks of T1 (the one at row IFST) has * been moved to position ILST. * * The test code verifies that the residual Q'*T1*Q-T2 is small, that T2 * is in Schur form, and that the final position of the IFST block is * ILST (within +-1). * * The test matrices are read from a file with logical unit number NIN. * * Arguments * ========== * * RMAX (output) DOUBLE PRECISION * Value of the largest test ratio. * * LMAX (output) INTEGER * Example number where largest test ratio achieved. * * NINFO (output) INTEGER array, dimension (3) * NINFO(J) is the number of examples where INFO=J. * * KNT (output) INTEGER * Total number of examples tested. * * NIN (input) INTEGER * Input logical unit number. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) INTEGER LDT, LWORK PARAMETER ( LDT = 10, LWORK = 2*LDT*LDT ) * .. * .. Local Scalars .. INTEGER I, IFST, IFST1, IFST2, IFSTSV, ILST, ILST1, $ ILST2, ILSTSV, INFO1, INFO2, J, LOC, N DOUBLE PRECISION EPS, RES * .. * .. Local Arrays .. DOUBLE PRECISION Q( LDT, LDT ), RESULT( 2 ), T1( LDT, LDT ), $ T2( LDT, LDT ), TMP( LDT, LDT ), WORK( LWORK ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. External Subroutines .. EXTERNAL DHST01, DLACPY, DLASET, DTREXC * .. * .. Intrinsic Functions .. INTRINSIC ABS, SIGN * .. * .. Executable Statements .. * EPS = DLAMCH( 'P' ) RMAX = ZERO LMAX = 0 KNT = 0 NINFO( 1 ) = 0 NINFO( 2 ) = 0 NINFO( 3 ) = 0 * * Read input data until N=0 * 10 CONTINUE READ( NIN, FMT = * )N, IFST, ILST IF( N.EQ.0 ) $ RETURN KNT = KNT + 1 DO 20 I = 1, N READ( NIN, FMT = * )( TMP( I, J ), J = 1, N ) 20 CONTINUE CALL DLACPY( 'F', N, N, TMP, LDT, T1, LDT ) CALL DLACPY( 'F', N, N, TMP, LDT, T2, LDT ) IFSTSV = IFST ILSTSV = ILST IFST1 = IFST ILST1 = ILST IFST2 = IFST ILST2 = ILST RES = ZERO * * Test without accumulating Q * CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDT ) CALL DTREXC( 'N', N, T1, LDT, Q, LDT, IFST1, ILST1, WORK, INFO1 ) DO 40 I = 1, N DO 30 J = 1, N IF( I.EQ.J .AND. Q( I, J ).NE.ONE ) $ RES = RES + ONE / EPS IF( I.NE.J .AND. Q( I, J ).NE.ZERO ) $ RES = RES + ONE / EPS 30 CONTINUE 40 CONTINUE * * Test with accumulating Q * CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDT ) CALL DTREXC( 'V', N, T2, LDT, Q, LDT, IFST2, ILST2, WORK, INFO2 ) * * Compare T1 with T2 * DO 60 I = 1, N DO 50 J = 1, N IF( T1( I, J ).NE.T2( I, J ) ) $ RES = RES + ONE / EPS 50 CONTINUE 60 CONTINUE IF( IFST1.NE.IFST2 ) $ RES = RES + ONE / EPS IF( ILST1.NE.ILST2 ) $ RES = RES + ONE / EPS IF( INFO1.NE.INFO2 ) $ RES = RES + ONE / EPS * * Test for successful reordering of T2 * IF( INFO2.NE.0 ) THEN NINFO( INFO2 ) = NINFO( INFO2 ) + 1 ELSE IF( ABS( IFST2-IFSTSV ).GT.1 ) $ RES = RES + ONE / EPS IF( ABS( ILST2-ILSTSV ).GT.1 ) $ RES = RES + ONE / EPS END IF * * Test for small residual, and orthogonality of Q * CALL DHST01( N, 1, N, TMP, LDT, T2, LDT, Q, LDT, WORK, LWORK, $ RESULT ) RES = RES + RESULT( 1 ) + RESULT( 2 ) * * Test for T2 being in Schur form * LOC = 1 70 CONTINUE IF( T2( LOC+1, LOC ).NE.ZERO ) THEN * * 2 by 2 block * IF( T2( LOC, LOC+1 ).EQ.ZERO .OR. T2( LOC, LOC ).NE. $ T2( LOC+1, LOC+1 ) .OR. SIGN( ONE, T2( LOC, LOC+1 ) ).EQ. $ SIGN( ONE, T2( LOC+1, LOC ) ) )RES = RES + ONE / EPS DO 80 I = LOC + 2, N IF( T2( I, LOC ).NE.ZERO ) $ RES = RES + ONE / RES IF( T2( I, LOC+1 ).NE.ZERO ) $ RES = RES + ONE / RES 80 CONTINUE LOC = LOC + 2 ELSE * * 1 by 1 block * DO 90 I = LOC + 1, N IF( T2( I, LOC ).NE.ZERO ) $ RES = RES + ONE / RES 90 CONTINUE LOC = LOC + 1 END IF IF( LOC.LT.N ) $ GO TO 70 IF( RES.GT.RMAX ) THEN RMAX = RES LMAX = KNT END IF GO TO 10 * * End of DGET36 * END |