1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
SUBROUTINE DGET39( RMAX, LMAX, NINFO, KNT )
* * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER KNT, LMAX, NINFO DOUBLE PRECISION RMAX * .. * * Purpose * ======= * * DGET39 tests DLAQTR, a routine for solving the real or * special complex quasi upper triangular system * * op(T)*p = scale*c, * or * op(T + iB)*(p+iq) = scale*(c+id), * * in real arithmetic. T is upper quasi-triangular. * If it is complex, then the first diagonal block of T must be * 1 by 1, B has the special structure * * B = [ b(1) b(2) ... b(n) ] * [ w ] * [ w ] * [ . ] * [ w ] * * op(A) = A or A', where A' denotes the conjugate transpose of * the matrix A. * * On input, X = [ c ]. On output, X = [ p ]. * [ d ] [ q ] * * Scale is an output less than or equal to 1, chosen to avoid * overflow in X. * This subroutine is specially designed for the condition number * estimation in the eigenproblem routine DTRSNA. * * The test code verifies that the following residual is order 1: * * ||(T+i*B)*(x1+i*x2) - scale*(d1+i*d2)|| * ----------------------------------------- * max(ulp*(||T||+||B||)*(||x1||+||x2||), * (||T||+||B||)*smlnum/ulp, * smlnum) * * (The (||T||+||B||)*smlnum/ulp term accounts for possible * (gradual or nongradual) underflow in x1 and x2.) * * Arguments * ========== * * RMAX (output) DOUBLE PRECISION * Value of the largest test ratio. * * LMAX (output) INTEGER * Example number where largest test ratio achieved. * * NINFO (output) INTEGER * Number of examples where INFO is nonzero. * * KNT (output) INTEGER * Total number of examples tested. * * ===================================================================== * * .. Parameters .. INTEGER LDT, LDT2 PARAMETER ( LDT = 10, LDT2 = 2*LDT ) DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. INTEGER I, INFO, IVM1, IVM2, IVM3, IVM4, IVM5, J, K, N, $ NDIM DOUBLE PRECISION BIGNUM, DOMIN, DUMM, EPS, NORM, NORMTB, RESID, $ SCALE, SMLNUM, W, XNORM * .. * .. External Functions .. INTEGER IDAMAX DOUBLE PRECISION DASUM, DDOT, DLAMCH, DLANGE EXTERNAL IDAMAX, DASUM, DDOT, DLAMCH, DLANGE * .. * .. External Subroutines .. EXTERNAL DCOPY, DGEMV, DLABAD, DLAQTR * .. * .. Intrinsic Functions .. INTRINSIC ABS, COS, DBLE, MAX, SIN, SQRT * .. * .. Local Arrays .. INTEGER IDIM( 6 ), IVAL( 5, 5, 6 ) DOUBLE PRECISION B( LDT ), D( LDT2 ), DUM( 1 ), T( LDT, LDT ), $ VM1( 5 ), VM2( 5 ), VM3( 5 ), VM4( 5 ), $ VM5( 3 ), WORK( LDT ), X( LDT2 ), Y( LDT2 ) * .. * .. Data statements .. DATA IDIM / 4, 5*5 / DATA IVAL / 3, 4*0, 1, 1, -1, 0, 0, 3, 2, 1, 0, 0, $ 4, 3, 2, 2, 0, 5*0, 1, 4*0, 2, 2, 3*0, 3, 3, 4, $ 0, 0, 4, 2, 2, 3, 0, 4*1, 5, 1, 4*0, 2, 4, -2, $ 0, 0, 3, 3, 4, 0, 0, 4, 2, 2, 3, 0, 5*1, 1, $ 4*0, 2, 1, -1, 0, 0, 9, 8, 1, 0, 0, 4, 9, 1, 2, $ -1, 5*2, 9, 4*0, 6, 4, 0, 0, 0, 3, 2, 1, 1, 0, $ 5, 1, -1, 1, 0, 5*2, 4, 4*0, 2, 2, 0, 0, 0, 1, $ 4, 4, 0, 0, 2, 4, 2, 2, -1, 5*2 / * .. * .. Executable Statements .. * * Get machine parameters * EPS = DLAMCH( 'P' ) SMLNUM = DLAMCH( 'S' ) BIGNUM = ONE / SMLNUM CALL DLABAD( SMLNUM, BIGNUM ) * * Set up test case parameters * VM1( 1 ) = ONE VM1( 2 ) = SQRT( SMLNUM ) VM1( 3 ) = SQRT( VM1( 2 ) ) VM1( 4 ) = SQRT( BIGNUM ) VM1( 5 ) = SQRT( VM1( 4 ) ) * VM2( 1 ) = ONE VM2( 2 ) = SQRT( SMLNUM ) VM2( 3 ) = SQRT( VM2( 2 ) ) VM2( 4 ) = SQRT( BIGNUM ) VM2( 5 ) = SQRT( VM2( 4 ) ) * VM3( 1 ) = ONE VM3( 2 ) = SQRT( SMLNUM ) VM3( 3 ) = SQRT( VM3( 2 ) ) VM3( 4 ) = SQRT( BIGNUM ) VM3( 5 ) = SQRT( VM3( 4 ) ) * VM4( 1 ) = ONE VM4( 2 ) = SQRT( SMLNUM ) VM4( 3 ) = SQRT( VM4( 2 ) ) VM4( 4 ) = SQRT( BIGNUM ) VM4( 5 ) = SQRT( VM4( 4 ) ) * VM5( 1 ) = ONE VM5( 2 ) = EPS VM5( 3 ) = SQRT( SMLNUM ) * * Initalization * KNT = 0 RMAX = ZERO NINFO = 0 SMLNUM = SMLNUM / EPS * * Begin test loop * DO 140 IVM5 = 1, 3 DO 130 IVM4 = 1, 5 DO 120 IVM3 = 1, 5 DO 110 IVM2 = 1, 5 DO 100 IVM1 = 1, 5 DO 90 NDIM = 1, 6 * N = IDIM( NDIM ) DO 20 I = 1, N DO 10 J = 1, N T( I, J ) = DBLE( IVAL( I, J, NDIM ) )* $ VM1( IVM1 ) IF( I.GE.J ) $ T( I, J ) = T( I, J )*VM5( IVM5 ) 10 CONTINUE 20 CONTINUE * W = ONE*VM2( IVM2 ) * DO 30 I = 1, N B( I ) = COS( DBLE( I ) )*VM3( IVM3 ) 30 CONTINUE * DO 40 I = 1, 2*N D( I ) = SIN( DBLE( I ) )*VM4( IVM4 ) 40 CONTINUE * NORM = DLANGE( '1', N, N, T, LDT, WORK ) K = IDAMAX( N, B, 1 ) NORMTB = NORM + ABS( B( K ) ) + ABS( W ) * CALL DCOPY( N, D, 1, X, 1 ) KNT = KNT + 1 CALL DLAQTR( .FALSE., .TRUE., N, T, LDT, DUM, $ DUMM, SCALE, X, WORK, INFO ) IF( INFO.NE.0 ) $ NINFO = NINFO + 1 * * || T*x - scale*d || / * max(ulp*||T||*||x||,smlnum/ulp*||T||,smlnum) * CALL DCOPY( N, D, 1, Y, 1 ) CALL DGEMV( 'No transpose', N, N, ONE, T, LDT, $ X, 1, -SCALE, Y, 1 ) XNORM = DASUM( N, X, 1 ) RESID = DASUM( N, Y, 1 ) DOMIN = MAX( SMLNUM, ( SMLNUM / EPS )*NORM, $ ( NORM*EPS )*XNORM ) RESID = RESID / DOMIN IF( RESID.GT.RMAX ) THEN RMAX = RESID LMAX = KNT END IF * CALL DCOPY( N, D, 1, X, 1 ) KNT = KNT + 1 CALL DLAQTR( .TRUE., .TRUE., N, T, LDT, DUM, $ DUMM, SCALE, X, WORK, INFO ) IF( INFO.NE.0 ) $ NINFO = NINFO + 1 * * || T*x - scale*d || / * max(ulp*||T||*||x||,smlnum/ulp*||T||,smlnum) * CALL DCOPY( N, D, 1, Y, 1 ) CALL DGEMV( 'Transpose', N, N, ONE, T, LDT, X, $ 1, -SCALE, Y, 1 ) XNORM = DASUM( N, X, 1 ) RESID = DASUM( N, Y, 1 ) DOMIN = MAX( SMLNUM, ( SMLNUM / EPS )*NORM, $ ( NORM*EPS )*XNORM ) RESID = RESID / DOMIN IF( RESID.GT.RMAX ) THEN RMAX = RESID LMAX = KNT END IF * CALL DCOPY( 2*N, D, 1, X, 1 ) KNT = KNT + 1 CALL DLAQTR( .FALSE., .FALSE., N, T, LDT, B, W, $ SCALE, X, WORK, INFO ) IF( INFO.NE.0 ) $ NINFO = NINFO + 1 * * ||(T+i*B)*(x1+i*x2) - scale*(d1+i*d2)|| / * max(ulp*(||T||+||B||)*(||x1||+||x2||), * smlnum/ulp * (||T||+||B||), smlnum ) * * CALL DCOPY( 2*N, D, 1, Y, 1 ) Y( 1 ) = DDOT( N, B, 1, X( 1+N ), 1 ) + $ SCALE*Y( 1 ) DO 50 I = 2, N Y( I ) = W*X( I+N ) + SCALE*Y( I ) 50 CONTINUE CALL DGEMV( 'No transpose', N, N, ONE, T, LDT, $ X, 1, -ONE, Y, 1 ) * Y( 1+N ) = DDOT( N, B, 1, X, 1 ) - $ SCALE*Y( 1+N ) DO 60 I = 2, N Y( I+N ) = W*X( I ) - SCALE*Y( I+N ) 60 CONTINUE CALL DGEMV( 'No transpose', N, N, ONE, T, LDT, $ X( 1+N ), 1, ONE, Y( 1+N ), 1 ) * RESID = DASUM( 2*N, Y, 1 ) DOMIN = MAX( SMLNUM, ( SMLNUM / EPS )*NORMTB, $ EPS*( NORMTB*DASUM( 2*N, X, 1 ) ) ) RESID = RESID / DOMIN IF( RESID.GT.RMAX ) THEN RMAX = RESID LMAX = KNT END IF * CALL DCOPY( 2*N, D, 1, X, 1 ) KNT = KNT + 1 CALL DLAQTR( .TRUE., .FALSE., N, T, LDT, B, W, $ SCALE, X, WORK, INFO ) IF( INFO.NE.0 ) $ NINFO = NINFO + 1 * * ||(T+i*B)*(x1+i*x2) - scale*(d1+i*d2)|| / * max(ulp*(||T||+||B||)*(||x1||+||x2||), * smlnum/ulp * (||T||+||B||), smlnum ) * CALL DCOPY( 2*N, D, 1, Y, 1 ) Y( 1 ) = B( 1 )*X( 1+N ) - SCALE*Y( 1 ) DO 70 I = 2, N Y( I ) = B( I )*X( 1+N ) + W*X( I+N ) - $ SCALE*Y( I ) 70 CONTINUE CALL DGEMV( 'Transpose', N, N, ONE, T, LDT, X, $ 1, ONE, Y, 1 ) * Y( 1+N ) = B( 1 )*X( 1 ) + SCALE*Y( 1+N ) DO 80 I = 2, N Y( I+N ) = B( I )*X( 1 ) + W*X( I ) + $ SCALE*Y( I+N ) 80 CONTINUE CALL DGEMV( 'Transpose', N, N, ONE, T, LDT, $ X( 1+N ), 1, -ONE, Y( 1+N ), 1 ) * RESID = DASUM( 2*N, Y, 1 ) DOMIN = MAX( SMLNUM, ( SMLNUM / EPS )*NORMTB, $ EPS*( NORMTB*DASUM( 2*N, X, 1 ) ) ) RESID = RESID / DOMIN IF( RESID.GT.RMAX ) THEN RMAX = RESID LMAX = KNT END IF * 90 CONTINUE 100 CONTINUE 110 CONTINUE 120 CONTINUE 130 CONTINUE 140 CONTINUE * RETURN * * End of DGET39 * END |