1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
SUBROUTINE DGET53( A, LDA, B, LDB, SCALE, WR, WI, RESULT, INFO )
* * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER INFO, LDA, LDB DOUBLE PRECISION RESULT, SCALE, WI, WR * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ) * .. * * Purpose * ======= * * DGET53 checks the generalized eigenvalues computed by DLAG2. * * The basic test for an eigenvalue is: * * | det( s A - w B ) | * RESULT = --------------------------------------------------- * ulp max( s norm(A), |w| norm(B) )*norm( s A - w B ) * * Two "safety checks" are performed: * * (1) ulp*max( s*norm(A), |w|*norm(B) ) must be at least * safe_minimum. This insures that the test performed is * not essentially det(0*A + 0*B)=0. * * (2) s*norm(A) + |w|*norm(B) must be less than 1/safe_minimum. * This insures that s*A - w*B will not overflow. * * If these tests are not passed, then s and w are scaled and * tested anyway, if this is possible. * * Arguments * ========= * * A (input) DOUBLE PRECISION array, dimension (LDA, 2) * The 2x2 matrix A. * * LDA (input) INTEGER * The leading dimension of A. It must be at least 2. * * B (input) DOUBLE PRECISION array, dimension (LDB, N) * The 2x2 upper-triangular matrix B. * * LDB (input) INTEGER * The leading dimension of B. It must be at least 2. * * SCALE (input) DOUBLE PRECISION * The "scale factor" s in the formula s A - w B . It is * assumed to be non-negative. * * WR (input) DOUBLE PRECISION * The real part of the eigenvalue w in the formula * s A - w B . * * WI (input) DOUBLE PRECISION * The imaginary part of the eigenvalue w in the formula * s A - w B . * * RESULT (output) DOUBLE PRECISION * If INFO is 2 or less, the value computed by the test * described above. * If INFO=3, this will just be 1/ulp. * * INFO (output) INTEGER * =0: The input data pass the "safety checks". * =1: s*norm(A) + |w|*norm(B) > 1/safe_minimum. * =2: ulp*max( s*norm(A), |w|*norm(B) ) < safe_minimum * =3: same as INFO=2, but s and w could not be scaled so * as to compute the test. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. DOUBLE PRECISION ABSW, ANORM, BNORM, CI11, CI12, CI22, CNORM, $ CR11, CR12, CR21, CR22, CSCALE, DETI, DETR, S1, $ SAFMIN, SCALES, SIGMIN, TEMP, ULP, WIS, WRS * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT * .. * .. Executable Statements .. * * Initialize * INFO = 0 RESULT = ZERO SCALES = SCALE WRS = WR WIS = WI * * Machine constants and norms * SAFMIN = DLAMCH( 'Safe minimum' ) ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) ABSW = ABS( WRS ) + ABS( WIS ) ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ), $ ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN ) BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 1, 2 ) )+ABS( B( 2, 2 ) ), $ SAFMIN ) * * Check for possible overflow. * TEMP = ( SAFMIN*BNORM )*ABSW + ( SAFMIN*ANORM )*SCALES IF( TEMP.GE.ONE ) THEN * * Scale down to avoid overflow * INFO = 1 TEMP = ONE / TEMP SCALES = SCALES*TEMP WRS = WRS*TEMP WIS = WIS*TEMP ABSW = ABS( WRS ) + ABS( WIS ) END IF S1 = MAX( ULP*MAX( SCALES*ANORM, ABSW*BNORM ), $ SAFMIN*MAX( SCALES, ABSW ) ) * * Check for W and SCALE essentially zero. * IF( S1.LT.SAFMIN ) THEN INFO = 2 IF( SCALES.LT.SAFMIN .AND. ABSW.LT.SAFMIN ) THEN INFO = 3 RESULT = ONE / ULP RETURN END IF * * Scale up to avoid underflow * TEMP = ONE / MAX( SCALES*ANORM+ABSW*BNORM, SAFMIN ) SCALES = SCALES*TEMP WRS = WRS*TEMP WIS = WIS*TEMP ABSW = ABS( WRS ) + ABS( WIS ) S1 = MAX( ULP*MAX( SCALES*ANORM, ABSW*BNORM ), $ SAFMIN*MAX( SCALES, ABSW ) ) IF( S1.LT.SAFMIN ) THEN INFO = 3 RESULT = ONE / ULP RETURN END IF END IF * * Compute C = s A - w B * CR11 = SCALES*A( 1, 1 ) - WRS*B( 1, 1 ) CI11 = -WIS*B( 1, 1 ) CR21 = SCALES*A( 2, 1 ) CR12 = SCALES*A( 1, 2 ) - WRS*B( 1, 2 ) CI12 = -WIS*B( 1, 2 ) CR22 = SCALES*A( 2, 2 ) - WRS*B( 2, 2 ) CI22 = -WIS*B( 2, 2 ) * * Compute the smallest singular value of s A - w B: * * |det( s A - w B )| * sigma_min = ------------------ * norm( s A - w B ) * CNORM = MAX( ABS( CR11 )+ABS( CI11 )+ABS( CR21 ), $ ABS( CR12 )+ABS( CI12 )+ABS( CR22 )+ABS( CI22 ), SAFMIN ) CSCALE = ONE / SQRT( CNORM ) DETR = ( CSCALE*CR11 )*( CSCALE*CR22 ) - $ ( CSCALE*CI11 )*( CSCALE*CI22 ) - $ ( CSCALE*CR12 )*( CSCALE*CR21 ) DETI = ( CSCALE*CR11 )*( CSCALE*CI22 ) + $ ( CSCALE*CI11 )*( CSCALE*CR22 ) - $ ( CSCALE*CI12 )*( CSCALE*CR21 ) SIGMIN = ABS( DETR ) + ABS( DETI ) RESULT = SIGMIN / S1 RETURN * * End of DGET53 * END |