1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
SUBROUTINE DGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF, X, U,
$ WORK, LWORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LDB, LWORK, M, N, P DOUBLE PRECISION RESULT * .. * .. Array Arguments .. * * Purpose * ======= * * DGLMTS tests DGGGLM - a subroutine for solving the generalized * linear model problem. * * Arguments * ========= * * N (input) INTEGER * The number of rows of the matrices A and B. N >= 0. * * M (input) INTEGER * The number of columns of the matrix A. M >= 0. * * P (input) INTEGER * The number of columns of the matrix B. P >= 0. * * A (input) DOUBLE PRECISION array, dimension (LDA,M) * The N-by-M matrix A. * * AF (workspace) DOUBLE PRECISION array, dimension (LDA,M) * * LDA (input) INTEGER * The leading dimension of the arrays A, AF. LDA >= max(M,N). * * B (input) DOUBLE PRECISION array, dimension (LDB,P) * The N-by-P matrix A. * * BF (workspace) DOUBLE PRECISION array, dimension (LDB,P) * * LDB (input) INTEGER * The leading dimension of the arrays B, BF. LDB >= max(P,N). * * D (input) DOUBLE PRECISION array, dimension( N ) * On input, the left hand side of the GLM. * * DF (workspace) DOUBLE PRECISION array, dimension( N ) * * X (output) DOUBLE PRECISION array, dimension( M ) * solution vector X in the GLM problem. * * U (output) DOUBLE PRECISION array, dimension( P ) * solution vector U in the GLM problem. * * WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK. * * RWORK (workspace) DOUBLE PRECISION array, dimension (M) * * RESULT (output) DOUBLE PRECISION * The test ratio: * norm( d - A*x - B*u ) * RESULT = ----------------------------------------- * (norm(A)+norm(B))*(norm(x)+norm(u))*EPS * * ==================================================================== * DOUBLE PRECISION A( LDA, * ), AF( LDA, * ), B( LDB, * ), $ BF( LDB, * ), D( * ), DF( * ), RWORK( * ), $ U( * ), WORK( LWORK ), X( * ) * .. * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER INFO DOUBLE PRECISION ANORM, BNORM, DNORM, EPS, UNFL, XNORM, YNORM * .. * .. External Functions .. DOUBLE PRECISION DASUM, DLAMCH, DLANGE EXTERNAL DASUM, DLAMCH, DLANGE * .. * .. External Subroutines .. * EXTERNAL DCOPY, DGEMV, DGGGLM, DLACPY * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * EPS = DLAMCH( 'Epsilon' ) UNFL = DLAMCH( 'Safe minimum' ) ANORM = MAX( DLANGE( '1', N, M, A, LDA, RWORK ), UNFL ) BNORM = MAX( DLANGE( '1', N, P, B, LDB, RWORK ), UNFL ) * * Copy the matrices A and B to the arrays AF and BF, * and the vector D the array DF. * CALL DLACPY( 'Full', N, M, A, LDA, AF, LDA ) CALL DLACPY( 'Full', N, P, B, LDB, BF, LDB ) CALL DCOPY( N, D, 1, DF, 1 ) * * Solve GLM problem * CALL DGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK, $ INFO ) * * Test the residual for the solution of LSE * * norm( d - A*x - B*u ) * RESULT = ----------------------------------------- * (norm(A)+norm(B))*(norm(x)+norm(u))*EPS * CALL DCOPY( N, D, 1, DF, 1 ) CALL DGEMV( 'No transpose', N, M, -ONE, A, LDA, X, 1, ONE, DF, 1 ) * CALL DGEMV( 'No transpose', N, P, -ONE, B, LDB, U, 1, ONE, DF, 1 ) * DNORM = DASUM( N, DF, 1 ) XNORM = DASUM( M, X, 1 ) + DASUM( P, U, 1 ) YNORM = ANORM + BNORM * IF( XNORM.LE.ZERO ) THEN RESULT = ZERO ELSE RESULT = ( ( DNORM / YNORM ) / XNORM ) / EPS END IF * RETURN * * End of DGLMTS * END |