1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
SUBROUTINE DGSVTS( M, P, N, A, AF, LDA, B, BF, LDB, U, LDU, V,
$ LDV, Q, LDQ, ALPHA, BETA, R, LDR, IWORK, WORK, $ LWORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LDB, LDQ, LDR, LDU, LDV, LWORK, M, N, P * .. * .. Array Arguments .. INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), AF( LDA, * ), ALPHA( * ), $ B( LDB, * ), BETA( * ), BF( LDB, * ), $ Q( LDQ, * ), R( LDR, * ), RESULT( 6 ), $ RWORK( * ), U( LDU, * ), V( LDV, * ), $ WORK( LWORK ) * .. * * Purpose * ======= * * DGSVTS tests DGGSVD, which computes the GSVD of an M-by-N matrix A * and a P-by-N matrix B: * U'*A*Q = D1*R and V'*B*Q = D2*R. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * P (input) INTEGER * The number of rows of the matrix B. P >= 0. * * N (input) INTEGER * The number of columns of the matrices A and B. N >= 0. * * A (input) DOUBLE PRECISION array, dimension (LDA,M) * The M-by-N matrix A. * * AF (output) DOUBLE PRECISION array, dimension (LDA,N) * Details of the GSVD of A and B, as returned by DGGSVD, * see DGGSVD for further details. * * LDA (input) INTEGER * The leading dimension of the arrays A and AF. * LDA >= max( 1,M ). * * B (input) DOUBLE PRECISION array, dimension (LDB,P) * On entry, the P-by-N matrix B. * * BF (output) DOUBLE PRECISION array, dimension (LDB,N) * Details of the GSVD of A and B, as returned by DGGSVD, * see DGGSVD for further details. * * LDB (input) INTEGER * The leading dimension of the arrays B and BF. * LDB >= max(1,P). * * U (output) DOUBLE PRECISION array, dimension(LDU,M) * The M by M orthogonal matrix U. * * LDU (input) INTEGER * The leading dimension of the array U. LDU >= max(1,M). * * V (output) DOUBLE PRECISION array, dimension(LDV,M) * The P by P orthogonal matrix V. * * LDV (input) INTEGER * The leading dimension of the array V. LDV >= max(1,P). * * Q (output) DOUBLE PRECISION array, dimension(LDQ,N) * The N by N orthogonal matrix Q. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= max(1,N). * * ALPHA (output) DOUBLE PRECISION array, dimension (N) * BETA (output) DOUBLE PRECISION array, dimension (N) * The generalized singular value pairs of A and B, the * ``diagonal'' matrices D1 and D2 are constructed from * ALPHA and BETA, see subroutine DGGSVD for details. * * R (output) DOUBLE PRECISION array, dimension(LDQ,N) * The upper triangular matrix R. * * LDR (input) INTEGER * The leading dimension of the array R. LDR >= max(1,N). * * IWORK (workspace) INTEGER array, dimension (N) * * WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK, * LWORK >= max(M,P,N)*max(M,P,N). * * RWORK (workspace) DOUBLE PRECISION array, dimension (max(M,P,N)) * * RESULT (output) DOUBLE PRECISION array, dimension (6) * The test ratios: * RESULT(1) = norm( U'*A*Q - D1*R ) / ( MAX(M,N)*norm(A)*ULP) * RESULT(2) = norm( V'*B*Q - D2*R ) / ( MAX(P,N)*norm(B)*ULP) * RESULT(3) = norm( I - U'*U ) / ( M*ULP ) * RESULT(4) = norm( I - V'*V ) / ( P*ULP ) * RESULT(5) = norm( I - Q'*Q ) / ( N*ULP ) * RESULT(6) = 0 if ALPHA is in decreasing order; * = ULPINV otherwise. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER I, INFO, J, K, L DOUBLE PRECISION ANORM, BNORM, RESID, TEMP, ULP, ULPINV, UNFL * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, DLANGE, DLANSY EXTERNAL DLAMCH, DLANGE, DLANSY * .. * .. External Subroutines .. EXTERNAL DCOPY, DGEMM, DGGSVD, DLACPY, DLASET, DSYRK * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN * .. * .. Executable Statements .. * ULP = DLAMCH( 'Precision' ) ULPINV = ONE / ULP UNFL = DLAMCH( 'Safe minimum' ) * * Copy the matrix A to the array AF. * CALL DLACPY( 'Full', M, N, A, LDA, AF, LDA ) CALL DLACPY( 'Full', P, N, B, LDB, BF, LDB ) * ANORM = MAX( DLANGE( '1', M, N, A, LDA, RWORK ), UNFL ) BNORM = MAX( DLANGE( '1', P, N, B, LDB, RWORK ), UNFL ) * * Factorize the matrices A and B in the arrays AF and BF. * CALL DGGSVD( 'U', 'V', 'Q', M, N, P, K, L, AF, LDA, BF, LDB, $ ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, IWORK, $ INFO ) * * Copy R * DO 20 I = 1, MIN( K+L, M ) DO 10 J = I, K + L R( I, J ) = AF( I, N-K-L+J ) 10 CONTINUE 20 CONTINUE * IF( M-K-L.LT.0 ) THEN DO 40 I = M + 1, K + L DO 30 J = I, K + L R( I, J ) = BF( I-K, N-K-L+J ) 30 CONTINUE 40 CONTINUE END IF * * Compute A:= U'*A*Q - D1*R * CALL DGEMM( 'No transpose', 'No transpose', M, N, N, ONE, A, LDA, $ Q, LDQ, ZERO, WORK, LDA ) * CALL DGEMM( 'Transpose', 'No transpose', M, N, M, ONE, U, LDU, $ WORK, LDA, ZERO, A, LDA ) * DO 60 I = 1, K DO 50 J = I, K + L A( I, N-K-L+J ) = A( I, N-K-L+J ) - R( I, J ) 50 CONTINUE 60 CONTINUE * DO 80 I = K + 1, MIN( K+L, M ) DO 70 J = I, K + L A( I, N-K-L+J ) = A( I, N-K-L+J ) - ALPHA( I )*R( I, J ) 70 CONTINUE 80 CONTINUE * * Compute norm( U'*A*Q - D1*R ) / ( MAX(1,M,N)*norm(A)*ULP ) . * RESID = DLANGE( '1', M, N, A, LDA, RWORK ) * IF( ANORM.GT.ZERO ) THEN RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M, N ) ) ) / ANORM ) / $ ULP ELSE RESULT( 1 ) = ZERO END IF * * Compute B := V'*B*Q - D2*R * CALL DGEMM( 'No transpose', 'No transpose', P, N, N, ONE, B, LDB, $ Q, LDQ, ZERO, WORK, LDB ) * CALL DGEMM( 'Transpose', 'No transpose', P, N, P, ONE, V, LDV, $ WORK, LDB, ZERO, B, LDB ) * DO 100 I = 1, L DO 90 J = I, L B( I, N-L+J ) = B( I, N-L+J ) - BETA( K+I )*R( K+I, K+J ) 90 CONTINUE 100 CONTINUE * * Compute norm( V'*B*Q - D2*R ) / ( MAX(P,N)*norm(B)*ULP ) . * RESID = DLANGE( '1', P, N, B, LDB, RWORK ) IF( BNORM.GT.ZERO ) THEN RESULT( 2 ) = ( ( RESID / DBLE( MAX( 1, P, N ) ) ) / BNORM ) / $ ULP ELSE RESULT( 2 ) = ZERO END IF * * Compute I - U'*U * CALL DLASET( 'Full', M, M, ZERO, ONE, WORK, LDQ ) CALL DSYRK( 'Upper', 'Transpose', M, M, -ONE, U, LDU, ONE, WORK, $ LDU ) * * Compute norm( I - U'*U ) / ( M * ULP ) . * RESID = DLANSY( '1', 'Upper', M, WORK, LDU, RWORK ) RESULT( 3 ) = ( RESID / DBLE( MAX( 1, M ) ) ) / ULP * * Compute I - V'*V * CALL DLASET( 'Full', P, P, ZERO, ONE, WORK, LDV ) CALL DSYRK( 'Upper', 'Transpose', P, P, -ONE, V, LDV, ONE, WORK, $ LDV ) * * Compute norm( I - V'*V ) / ( P * ULP ) . * RESID = DLANSY( '1', 'Upper', P, WORK, LDV, RWORK ) RESULT( 4 ) = ( RESID / DBLE( MAX( 1, P ) ) ) / ULP * * Compute I - Q'*Q * CALL DLASET( 'Full', N, N, ZERO, ONE, WORK, LDQ ) CALL DSYRK( 'Upper', 'Transpose', N, N, -ONE, Q, LDQ, ONE, WORK, $ LDQ ) * * Compute norm( I - Q'*Q ) / ( N * ULP ) . * RESID = DLANSY( '1', 'Upper', N, WORK, LDQ, RWORK ) RESULT( 5 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / ULP * * Check sorting * CALL DCOPY( N, ALPHA, 1, WORK, 1 ) DO 110 I = K + 1, MIN( K+L, M ) J = IWORK( I ) IF( I.NE.J ) THEN TEMP = WORK( I ) WORK( I ) = WORK( J ) WORK( J ) = TEMP END IF 110 CONTINUE * RESULT( 6 ) = ZERO DO 120 I = K + 1, MIN( K+L, M ) - 1 IF( WORK( I ).LT.WORK( I+1 ) ) $ RESULT( 6 ) = ULPINV 120 CONTINUE * RETURN * * End of DGSVTS * END |