1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
SUBROUTINE DLATB9( PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB,
$ ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB, $ DISTA, DISTB ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER DISTA, DISTB, TYPE CHARACTER*3 PATH INTEGER IMAT, KLA, KLB, KUA, KUB, M, MODEA, MODEB, N, P DOUBLE PRECISION ANORM, BNORM, CNDNMA, CNDNMB * .. * * Purpose * ======= * * DLATB9 sets parameters for the matrix generator based on the type of * matrix to be generated. * * Arguments * ========= * * PATH (input) CHARACTER*3 * The LAPACK path name. * * IMAT (input) INTEGER * An integer key describing which matrix to generate for this * path. * * M (input) INTEGER * The number of rows in the matrix to be generated. * * N (input) INTEGER * The number of columns in the matrix to be generated. * * TYPE (output) CHARACTER*1 * The type of the matrix to be generated: * = 'S': symmetric matrix; * = 'P': symmetric positive (semi)definite matrix; * = 'N': nonsymmetric matrix. * * KL (output) INTEGER * The lower band width of the matrix to be generated. * * KU (output) INTEGER * The upper band width of the matrix to be generated. * * ANORM (output) DOUBLE PRECISION * The desired norm of the matrix to be generated. The diagonal * matrix of singular values or eigenvalues is scaled by this * value. * * MODE (output) INTEGER * A key indicating how to choose the vector of eigenvalues. * * CNDNUM (output) DOUBLE PRECISION * The desired condition number. * * DIST (output) CHARACTER*1 * The type of distribution to be used by the random number * generator. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION SHRINK, TENTH PARAMETER ( SHRINK = 0.25D0, TENTH = 0.1D+0 ) DOUBLE PRECISION ONE, TEN PARAMETER ( ONE = 1.0D+0, TEN = 1.0D+1 ) * .. * .. Local Scalars .. LOGICAL FIRST DOUBLE PRECISION BADC1, BADC2, EPS, LARGE, SMALL * .. * .. External Functions .. LOGICAL LSAMEN DOUBLE PRECISION DLAMCH EXTERNAL LSAMEN, DLAMCH * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT * .. * .. External Subroutines .. EXTERNAL DLABAD * .. * .. Save statement .. SAVE EPS, SMALL, LARGE, BADC1, BADC2, FIRST * .. * .. Data statements .. DATA FIRST / .TRUE. / * .. * .. Executable Statements .. * * Set some constants for use in the subroutine. * IF( FIRST ) THEN FIRST = .FALSE. EPS = DLAMCH( 'Precision' ) BADC2 = TENTH / EPS BADC1 = SQRT( BADC2 ) SMALL = DLAMCH( 'Safe minimum' ) LARGE = ONE / SMALL * * If it looks like we're on a Cray, take the square root of * SMALL and LARGE to avoid overflow and underflow problems. * CALL DLABAD( SMALL, LARGE ) SMALL = SHRINK*( SMALL / EPS ) LARGE = ONE / SMALL END IF * * Set some parameters we don't plan to change. * TYPE = 'N' DISTA = 'S' DISTB = 'S' MODEA = 3 MODEB = 4 * * Set the lower and upper bandwidths. * IF( LSAMEN( 3, PATH, 'GRQ' ) .OR. LSAMEN( 3, PATH, 'LSE' ) .OR. $ LSAMEN( 3, PATH, 'GSV' ) ) THEN * * A: M by N, B: P by N * IF( IMAT.EQ.1 ) THEN * * A: diagonal, B: upper triangular * KLA = 0 KUA = 0 KLB = 0 KUB = MAX( N-1, 0 ) * ELSE IF( IMAT.EQ.2 ) THEN * * A: upper triangular, B: upper triangular * KLA = 0 KUA = MAX( N-1, 0 ) KLB = 0 KUB = MAX( N-1, 0 ) * ELSE IF( IMAT.EQ.3 ) THEN * * A: lower triangular, B: upper triangular * KLA = MAX( M-1, 0 ) KUA = 0 KLB = 0 KUB = MAX( N-1, 0 ) * ELSE * * A: general dense, B: general dense * KLA = MAX( M-1, 0 ) KUA = MAX( N-1, 0 ) KLB = MAX( P-1, 0 ) KUB = MAX( N-1, 0 ) * END IF * ELSE IF( LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GLM' ) ) $ THEN * * A: N by M, B: N by P * IF( IMAT.EQ.1 ) THEN * * A: diagonal, B: lower triangular * KLA = 0 KUA = 0 KLB = MAX( N-1, 0 ) KUB = 0 ELSE IF( IMAT.EQ.2 ) THEN * * A: lower triangular, B: diagonal * KLA = MAX( N-1, 0 ) KUA = 0 KLB = 0 KUB = 0 * ELSE IF( IMAT.EQ.3 ) THEN * * A: lower triangular, B: upper triangular * KLA = MAX( N-1, 0 ) KUA = 0 KLB = 0 KUB = MAX( P-1, 0 ) * ELSE * * A: general dense, B: general dense * KLA = MAX( N-1, 0 ) KUA = MAX( M-1, 0 ) KLB = MAX( N-1, 0 ) KUB = MAX( P-1, 0 ) END IF * END IF * * Set the condition number and norm. * CNDNMA = TEN*TEN CNDNMB = TEN IF( LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) .OR. $ LSAMEN( 3, PATH, 'GSV' ) ) THEN IF( IMAT.EQ.5 ) THEN CNDNMA = BADC1 CNDNMB = BADC1 ELSE IF( IMAT.EQ.6 ) THEN CNDNMA = BADC2 CNDNMB = BADC2 ELSE IF( IMAT.EQ.7 ) THEN CNDNMA = BADC1 CNDNMB = BADC2 ELSE IF( IMAT.EQ.8 ) THEN CNDNMA = BADC2 CNDNMB = BADC1 END IF END IF * ANORM = TEN BNORM = TEN*TEN*TEN IF( LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) ) THEN IF( IMAT.EQ.7 ) THEN ANORM = SMALL BNORM = LARGE ELSE IF( IMAT.EQ.8 ) THEN ANORM = LARGE BNORM = SMALL END IF END IF * IF( N.LE.1 ) THEN CNDNMA = ONE CNDNMB = ONE END IF * RETURN * * End of DLATB9 * END |