1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
SUBROUTINE DLATM4( ITYPE, N, NZ1, NZ2, ISIGN, AMAGN, RCOND,
$ TRIANG, IDIST, ISEED, A, LDA ) * * -- LAPACK auxiliary test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER IDIST, ISIGN, ITYPE, LDA, N, NZ1, NZ2 DOUBLE PRECISION AMAGN, RCOND, TRIANG * .. * .. Array Arguments .. INTEGER ISEED( 4 ) DOUBLE PRECISION A( LDA, * ) * .. * * Purpose * ======= * * DLATM4 generates basic square matrices, which may later be * multiplied by others in order to produce test matrices. It is * intended mainly to be used to test the generalized eigenvalue * routines. * * It first generates the diagonal and (possibly) subdiagonal, * according to the value of ITYPE, NZ1, NZ2, ISIGN, AMAGN, and RCOND. * It then fills in the upper triangle with random numbers, if TRIANG is * non-zero. * * Arguments * ========= * * ITYPE (input) INTEGER * The "type" of matrix on the diagonal and sub-diagonal. * If ITYPE < 0, then type abs(ITYPE) is generated and then * swapped end for end (A(I,J) := A'(N-J,N-I).) See also * the description of AMAGN and ISIGN. * * Special types: * = 0: the zero matrix. * = 1: the identity. * = 2: a transposed Jordan block. * = 3: If N is odd, then a k+1 x k+1 transposed Jordan block * followed by a k x k identity block, where k=(N-1)/2. * If N is even, then k=(N-2)/2, and a zero diagonal entry * is tacked onto the end. * * Diagonal types. The diagonal consists of NZ1 zeros, then * k=N-NZ1-NZ2 nonzeros. The subdiagonal is zero. ITYPE * specifies the nonzero diagonal entries as follows: * = 4: 1, ..., k * = 5: 1, RCOND, ..., RCOND * = 6: 1, ..., 1, RCOND * = 7: 1, a, a^2, ..., a^(k-1)=RCOND * = 8: 1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND * = 9: random numbers chosen from (RCOND,1) * = 10: random numbers with distribution IDIST (see DLARND.) * * N (input) INTEGER * The order of the matrix. * * NZ1 (input) INTEGER * If abs(ITYPE) > 3, then the first NZ1 diagonal entries will * be zero. * * NZ2 (input) INTEGER * If abs(ITYPE) > 3, then the last NZ2 diagonal entries will * be zero. * * ISIGN (input) INTEGER * = 0: The sign of the diagonal and subdiagonal entries will * be left unchanged. * = 1: The diagonal and subdiagonal entries will have their * sign changed at random. * = 2: If ITYPE is 2 or 3, then the same as ISIGN=1. * Otherwise, with probability 0.5, odd-even pairs of * diagonal entries A(2*j-1,2*j-1), A(2*j,2*j) will be * converted to a 2x2 block by pre- and post-multiplying * by distinct random orthogonal rotations. The remaining * diagonal entries will have their sign changed at random. * * AMAGN (input) DOUBLE PRECISION * The diagonal and subdiagonal entries will be multiplied by * AMAGN. * * RCOND (input) DOUBLE PRECISION * If abs(ITYPE) > 4, then the smallest diagonal entry will be * entry will be RCOND. RCOND must be between 0 and 1. * * TRIANG (input) DOUBLE PRECISION * The entries above the diagonal will be random numbers with * magnitude bounded by TRIANG (i.e., random numbers multiplied * by TRIANG.) * * IDIST (input) INTEGER * Specifies the type of distribution to be used to generate a * random matrix. * = 1: UNIFORM( 0, 1 ) * = 2: UNIFORM( -1, 1 ) * = 3: NORMAL ( 0, 1 ) * * ISEED (input/output) INTEGER array, dimension (4) * On entry ISEED specifies the seed of the random number * generator. The values of ISEED are changed on exit, and can * be used in the next call to DLATM4 to continue the same * random number sequence. * Note: ISEED(4) should be odd, for the random number generator * used at present. * * A (output) DOUBLE PRECISION array, dimension (LDA, N) * Array to be computed. * * LDA (input) INTEGER * Leading dimension of A. Must be at least 1 and at least N. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 ) DOUBLE PRECISION HALF PARAMETER ( HALF = ONE / TWO ) * .. * .. Local Scalars .. INTEGER I, IOFF, ISDB, ISDE, JC, JD, JR, K, KBEG, KEND, $ KLEN DOUBLE PRECISION ALPHA, CL, CR, SAFMIN, SL, SR, SV1, SV2, TEMP * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, DLARAN, DLARND EXTERNAL DLAMCH, DLARAN, DLARND * .. * .. External Subroutines .. EXTERNAL DLASET * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, EXP, LOG, MAX, MIN, MOD, SQRT * .. * .. Executable Statements .. * IF( N.LE.0 ) $ RETURN CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA ) * * Insure a correct ISEED * IF( MOD( ISEED( 4 ), 2 ).NE.1 ) $ ISEED( 4 ) = ISEED( 4 ) + 1 * * Compute diagonal and subdiagonal according to ITYPE, NZ1, NZ2, * and RCOND * IF( ITYPE.NE.0 ) THEN IF( ABS( ITYPE ).GE.4 ) THEN KBEG = MAX( 1, MIN( N, NZ1+1 ) ) KEND = MAX( KBEG, MIN( N, N-NZ2 ) ) KLEN = KEND + 1 - KBEG ELSE KBEG = 1 KEND = N KLEN = N END IF ISDB = 1 ISDE = 0 GO TO ( 10, 30, 50, 80, 100, 120, 140, 160, $ 180, 200 )ABS( ITYPE ) * * abs(ITYPE) = 1: Identity * 10 CONTINUE DO 20 JD = 1, N A( JD, JD ) = ONE 20 CONTINUE GO TO 220 * * abs(ITYPE) = 2: Transposed Jordan block * 30 CONTINUE DO 40 JD = 1, N - 1 A( JD+1, JD ) = ONE 40 CONTINUE ISDB = 1 ISDE = N - 1 GO TO 220 * * abs(ITYPE) = 3: Transposed Jordan block, followed by the * identity. * 50 CONTINUE K = ( N-1 ) / 2 DO 60 JD = 1, K A( JD+1, JD ) = ONE 60 CONTINUE ISDB = 1 ISDE = K DO 70 JD = K + 2, 2*K + 1 A( JD, JD ) = ONE 70 CONTINUE GO TO 220 * * abs(ITYPE) = 4: 1,...,k * 80 CONTINUE DO 90 JD = KBEG, KEND A( JD, JD ) = DBLE( JD-NZ1 ) 90 CONTINUE GO TO 220 * * abs(ITYPE) = 5: One large D value: * 100 CONTINUE DO 110 JD = KBEG + 1, KEND A( JD, JD ) = RCOND 110 CONTINUE A( KBEG, KBEG ) = ONE GO TO 220 * * abs(ITYPE) = 6: One small D value: * 120 CONTINUE DO 130 JD = KBEG, KEND - 1 A( JD, JD ) = ONE 130 CONTINUE A( KEND, KEND ) = RCOND GO TO 220 * * abs(ITYPE) = 7: Exponentially distributed D values: * 140 CONTINUE A( KBEG, KBEG ) = ONE IF( KLEN.GT.1 ) THEN ALPHA = RCOND**( ONE / DBLE( KLEN-1 ) ) DO 150 I = 2, KLEN A( NZ1+I, NZ1+I ) = ALPHA**DBLE( I-1 ) 150 CONTINUE END IF GO TO 220 * * abs(ITYPE) = 8: Arithmetically distributed D values: * 160 CONTINUE A( KBEG, KBEG ) = ONE IF( KLEN.GT.1 ) THEN ALPHA = ( ONE-RCOND ) / DBLE( KLEN-1 ) DO 170 I = 2, KLEN A( NZ1+I, NZ1+I ) = DBLE( KLEN-I )*ALPHA + RCOND 170 CONTINUE END IF GO TO 220 * * abs(ITYPE) = 9: Randomly distributed D values on ( RCOND, 1): * 180 CONTINUE ALPHA = LOG( RCOND ) DO 190 JD = KBEG, KEND A( JD, JD ) = EXP( ALPHA*DLARAN( ISEED ) ) 190 CONTINUE GO TO 220 * * abs(ITYPE) = 10: Randomly distributed D values from DIST * 200 CONTINUE DO 210 JD = KBEG, KEND A( JD, JD ) = DLARND( IDIST, ISEED ) 210 CONTINUE * 220 CONTINUE * * Scale by AMAGN * DO 230 JD = KBEG, KEND A( JD, JD ) = AMAGN*DBLE( A( JD, JD ) ) 230 CONTINUE DO 240 JD = ISDB, ISDE A( JD+1, JD ) = AMAGN*DBLE( A( JD+1, JD ) ) 240 CONTINUE * * If ISIGN = 1 or 2, assign random signs to diagonal and * subdiagonal * IF( ISIGN.GT.0 ) THEN DO 250 JD = KBEG, KEND IF( DBLE( A( JD, JD ) ).NE.ZERO ) THEN IF( DLARAN( ISEED ).GT.HALF ) $ A( JD, JD ) = -A( JD, JD ) END IF 250 CONTINUE DO 260 JD = ISDB, ISDE IF( DBLE( A( JD+1, JD ) ).NE.ZERO ) THEN IF( DLARAN( ISEED ).GT.HALF ) $ A( JD+1, JD ) = -A( JD+1, JD ) END IF 260 CONTINUE END IF * * Reverse if ITYPE < 0 * IF( ITYPE.LT.0 ) THEN DO 270 JD = KBEG, ( KBEG+KEND-1 ) / 2 TEMP = A( JD, JD ) A( JD, JD ) = A( KBEG+KEND-JD, KBEG+KEND-JD ) A( KBEG+KEND-JD, KBEG+KEND-JD ) = TEMP 270 CONTINUE DO 280 JD = 1, ( N-1 ) / 2 TEMP = A( JD+1, JD ) A( JD+1, JD ) = A( N+1-JD, N-JD ) A( N+1-JD, N-JD ) = TEMP 280 CONTINUE END IF * * If ISIGN = 2, and no subdiagonals already, then apply * random rotations to make 2x2 blocks. * IF( ISIGN.EQ.2 .AND. ITYPE.NE.2 .AND. ITYPE.NE.3 ) THEN SAFMIN = DLAMCH( 'S' ) DO 290 JD = KBEG, KEND - 1, 2 IF( DLARAN( ISEED ).GT.HALF ) THEN * * Rotation on left. * CL = TWO*DLARAN( ISEED ) - ONE SL = TWO*DLARAN( ISEED ) - ONE TEMP = ONE / MAX( SAFMIN, SQRT( CL**2+SL**2 ) ) CL = CL*TEMP SL = SL*TEMP * * Rotation on right. * CR = TWO*DLARAN( ISEED ) - ONE SR = TWO*DLARAN( ISEED ) - ONE TEMP = ONE / MAX( SAFMIN, SQRT( CR**2+SR**2 ) ) CR = CR*TEMP SR = SR*TEMP * * Apply * SV1 = A( JD, JD ) SV2 = A( JD+1, JD+1 ) A( JD, JD ) = CL*CR*SV1 + SL*SR*SV2 A( JD+1, JD ) = -SL*CR*SV1 + CL*SR*SV2 A( JD, JD+1 ) = -CL*SR*SV1 + SL*CR*SV2 A( JD+1, JD+1 ) = SL*SR*SV1 + CL*CR*SV2 END IF 290 CONTINUE END IF * END IF * * Fill in upper triangle (except for 2x2 blocks) * IF( TRIANG.NE.ZERO ) THEN IF( ISIGN.NE.2 .OR. ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN IOFF = 1 ELSE IOFF = 2 DO 300 JR = 1, N - 1 IF( A( JR+1, JR ).EQ.ZERO ) $ A( JR, JR+1 ) = TRIANG*DLARND( IDIST, ISEED ) 300 CONTINUE END IF * DO 320 JC = 2, N DO 310 JR = 1, JC - IOFF A( JR, JC ) = TRIANG*DLARND( IDIST, ISEED ) 310 CONTINUE 320 CONTINUE END IF * RETURN * * End of DLATM4 * END |